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Validation of results is a pressing challenge in extreme-scale workflows. Data corruption,
whether coming from bugs, attacks, or background radiation is increasingly likely in
complex infrastructure and applications, and new solutions for corruption detection and
tolerance are needed [1]. While addressing detection and recovery from fail-stop errors in
single applications is fairly well studied, little is being done to detect and recover from
systematic and nonsystematic silent data corruption (SDC), ie, from errors that do not cause
obvious disruption, particularly in workflows of multiple applications. We describe below
early work in error quantification that makes it possible to adapt the detection sensitivity to
fit the expected accuracy of results. This model is used to detect SDCs in a pipeline of several
application tasks operating on a single time step of data, without requiring a time series of
multiple time steps. Such a model can be used to develop new adaptive and resilient
workflow management systems (WMS).

In pipeline workflows such as the one shown in Figure 1(a), verification is commonly done
using simple pipeline replication as in Figure 1(b). Comparing outputs of both replicas of
the same pipeline can help detect corruptions affecting one of the replicas. The downside of
this approach is the high cost of replication, and because all the replicas are identical,
systematic errors affecting all replicas cannot be detected. We aim to design a new generic
method that provides efficient error detection capabilities for both systematic and
nonsystematic errors using an external algorithmic observer.

In order to detect systematic errors, the replication mechanism must involve different
algorithms that do not share the same systematic corruption. Ideally, the replica (observer)
should be less computationally expensive than the original algorithm. Further complicating
the situation is the fact that most HPC applications produce approximated results. This fact
implies that a simple binary difference cannot be used to compare those results, but rather
that special metrics must be tailored to the expected distribution of the results.
Furthermore, the distance between the two algorithms may be nonzero, even in
uncorrupted cases, due to the intrinsic noise between algorithms.
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Figure 1. (a)Linear pipeline models: (a) without replication (default) (b) with simple replication, and (c)
with an external observer (our method)

Detection is achieved by comparing the distance between results to the expected level of
noise. This expected level of noise is used as a threshold between noise from natural
variation between the methods and actual corruption. The detection is achieved by the



validation pipeline, which is deployed alongside the main pipeline - Figure 1(c) - and aims
at describing the context, predicting noise levels, and validating results originating from the
main pipeline and detecting outliers.

The prediction step is done by building a model through machine learning and using this
same model for data validation. The first step in the validation pipeline is extracting
meaningful descriptors characterizing the input. Those descriptors contain both
characteristics of the input data and parameters of the processing algorithms. Given those
descriptors, the prediction then uses the learned model to compute the interval of expected
values. The last step is to compare the result from the main pipeline with the predicted
interval.

As part of the Decaf project [2], we applied this theoretical model to density estimation of
cosmological dark matter. This use case is a linear pipeline producing density field images
from sets of particles. Alongside a tessellation-based density estimator [3], we execute a
simpler adaptive kernel density estimator [4], and compare the results using a custom
metric. The complexity of the tessellation is O(P2) and the one of adaptive kernel is O(P log
P). Figure 2 shows the variation of the differences between the two algorithms as well as the
acceptance rate when applying the validation pipeline to our use case.

This generic method provides error detection capabilities on the order of the inherent
approximation error of the underlying algorithms and the sensitivity of the difference
metric to those errors. Our workflow demonstrates the theory of using an external observer
in order to detect SDC. While our method cannot detect errors smaller than the
approximation error of the underlying algorithms, ignoring small errors whose impact is
below the expected accuracy is usually acceptable, if not desirable behavior. All in all, our
early results show that adding data validation to WMSs can address the challenges of trust
and validation in extreme-scale workflows; but also that much more research is needed.
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Figure 2. Sensitivity and accuracy of external observer with different amounts of memory corruption.
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