7 OpenZeppelin

OpenZeppelin Contracts

Version 5.0

EthCC[6] - July 2023

Hadrien Croubois
hadrien@openzeppelin.com
@AMXX

OpenZeppelin’s thesis

e There will be a trillion dollar open economy built on blockchains
and powered by smart contracts

e This new, open economy will be built by teams of creative people
developing new applications used by billions of people

e These teams will need a set of tools, products and services to
make sure that what they are building is safe and reliable

e OpenZeppelin will be a leading provider of these solutions,
allowing teams to build faster with lower risk

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

OpenZeppelin’s products

III L1/ L2 Networks
Contracts

10+ million downloads
QeThereum Co polygon

Build

po/k.adat QAVALANCHE

aARBITRUM QSTARKWARE

Security
and
Reliability OPTIMISM O celo
Inspect Manage
_ £ fantom
@ Audits € pefender
150+ audits 9,000+ teams served e Hedera

el |

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Contracts

@openzeppelin/contracts@4.9.2
@openzeppelin/contracts-upgradeable@4.9.2

"I Contracts

A library of modular, reusable, secure smart contracts
for the Ethereum network, written in Solidity.

» Leverage standard, tested, and community-
reviewed contracts.
Most popular library in the industry.

Learn from best practices adopted by the

&

ecosystem.

Reduce your attack surface by reusing audited

code.

VISIT SITE GO TO DOCS

ared.hadriencrout

Some statistics

Downloads per month
Click and drag in the plot to zoom in

2,000k

1,500k

1,000k

Downloads

500k

2022 o 02% o 2022 . 2022 oo 2023 e 2022 o2 2023 > 2023 o 2023 = 2072

22 2%
AL 0 pud ? ce?
Month

[.._ @openzeppelinfupgrades-core —— @openzeppelin/contracts —=- @openzeppelirvcontracls-upgradeable]

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Immunefi bug bounty

OpenZeppelin

Live since KYC required Maximum bounty

Program Overview

OpenZeppelin is the premier crypto cybersecurity technology and services company, trusted by the most used DeFi and NFT projects. Founded in
2015 with the mission to protect the open economy, OpenZeppelin provides a complete suite of security products to build, manage, and inspect all

aspects of software development and operations for Ethereum projects.

OpenZeppelin safeguards tens of billions of dollars in funds for leading crypto organizations including Coinbase, Ethereum Foundation, Compound,

Aave, TheGraph, and many others.
For more information about OpenZeppelin, please visit https://openzeppelin.com/.
This bug bounty program is focused on their smart contracts and is focused on preventing:
Loss of funds by freezing or theft
Denial of service (smart contract is made unable to operate)

Access control is bypassed, including privilege escalation

Smart contract does not behave as intended

This is an overlay bug bounty program for OpenZeppelin's contracts library. A vulnerability in an OpenZeppelin library would likely affect many other

projects and could trigger various other bounties. This program would be potentially additive to these cases.

One year of features

4.7.0t04.9.2

Governance & Votes DeFi

e Support timestamp (see ERC-6372) e ERC4626 virtual offset
Access Libraries

e Ownable2Step e ShortStrings

e AccessControlDefaultAdminRules e ceip712Domain (see EIP-5267)
NFTs Other

e ERC721Consecutive e Procedural code generation

e ERC721Wrapper e Formalverification and fuzzing

/w And many many more... (see Changelog)

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

= .
@openzeppelin/merkle-tree

Quick Start

e Build tree from leaf details,
with automatic double hashing

npm install @openzeppelin/merkle-tree

Building a Tree

©

import { StandardMerkleTree } from "@openzeppelin/merkle-tree”;
import fs from "fs";

e Dump to file / load from file

["©x11", "5000000000000000000"],
[. 1
1;

17 (2)

. Generate proofs and m ultiproofs const tree = StandardMerkleTree.of(values, ["address", "uint256"]);

17 (3)
console.log('Merkle Root:', tree.root);

/7 (4)
fs.writeFileSync("tree.json", JSON.stringify(tree.dump()));

. ve rify p ro Ofs a n d m u Iti p ro Ofs 1. Get the values to include in the tree. (Note: Consider reading them from a file.)

2. Build the merkle tree. Set the encoding to match the values.

3. Print the merkle root. You will probably publish this value on chain in a smart contract.

4. Write a file that describes the tree. You will distribute this to users so they can generate proofs for values
in the tree.

e Getroot, render, hash leaf, ...

Obtaining a Proof

Assume we're looking to generate a proof for the entry that corresponds to address ex11...11 . l

import { StandardMerkleTree } from "@openzeppelin/merkle-tree”;
import fs from "fs";

/7 (1)
const tree = StandardMerkleTree.load(JSON.parse(fs.readFileSync("tree.json")));

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

What is comingin 5.0?

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

The AccessManager system

A single contract of managing all the permissions in your dApp

AccessManager

and

AccessManaged
(abstract contract that provides a “restricted” modifier)

and

AccessManagedAdapter

(for contracts that are Ownable or AccessControl)

/1 Design is still work in progress.

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

The AccessManager system

A single contract of managing all the permissions in your dApp

AccessControl AccessManager
» /W\ - > | Contract 1 ‘ ‘ Contract 2
adm;u! ?ﬂm DauS\ : ‘}nusev umz{d:l !lﬂurader \ }

manatq‘ }anauer

\ Acgess Manaqer .
7 ol

admin pauser uparader

) MM

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Calling a restricted contract

Directly

User Contract AccessManager

mint

v

canCall(User, Contract, mint)

User Contract AccessManager

]

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Calling a restricted contract

With a Delay

User AccessManager Contract

schedule(Contract, mint, salt)

v

call(Contract, mint, salt)

v

mint

v

canCall(AccessManager, Contract, mint)

A

/} --- "
User AccessManager Contract

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Namespace storage

Stop worrying about inheritance ordering during upgrades

contract AbcUpgradeable {
/1 keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Abc")) - 1)) = @xb0276dade97acf68f2f0987ab59d31f961df149c06dd6405568fd584afacalfe
bytes32 private constant MAIN_STORAGE_LOCATION = @xb0276da@e97acf68f2f0987ab59d31f961df149c06dd6405568fd584af4calfo;

/11 @custom:storage-location erc7201:openzeppelin.storage.Abc
struct AbcStorage {

contract Abc { uint256 x;
uint256 private x; address y;
address private y; i}
/11 @custom:oz-unsafe-allow immutable /11 @custom:oz-unsafe-allow immutable
uint256 private immutable z; uint256 private immutable z;
function _foo() internal { function _getAbcStorage() private pure returns (AbcStorage storage $) {
—_—
(bool success,) = y.call{value: x}(new bytes(2)); bytes32 slot = MAIN_STORAGE_LOCATION;
Tequire(success); assembly { $.slot := slot }
}
function _bar() internal view returns (uint256) { function _foo() internal {
return z; AbcStorage storage $ = _getAbcStorage();
} (bool success,) = $.y.call{value: $.x}(new bytes(@));
} require(success);
}

function _bar() internal view returns (uint256) {
return z;

}

Design is still work in progress.

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

See ERC-7201

Status: draft

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Contracts refactor

Breaking changes that requires a major version

Tokens (ERC20, ERC721, ERC1155) Governor voting
e Remove hooks in the token contracts e Bytessignatures
e Lock _transfer, _mint, _burn e Nonce protected
e Single function to override: _update(...) e ERC-1271 support
Nonces Ownable
e Dedicated abstract contract e Takeinitial owner as an argument

]

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

More modern solidity

Catching up with the compiler

pragma solidity 40.8.0; pragma solidity 40.8.19;
import "../utils/Context.sol"; import {Context} from "../utils/Context.sol";
abstract contract Ownable is Context { abstract contract Ownable is Context {
address private _owner; address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newowner); error OwnableUnauthorizedAccount (address account);
error OwnableInvalidOwner(address owner);
constructor() { event OwnershipTransferred(address indexed previousOwner, address
_transferownership(_msgSender());
} constructor(address initialOwner) {
_transferownership(initialowner);
modifier onlyowner() { 3

_checkowner() ;
. modifier onlyowner() {

} _checkowner();
function owner() public view virtual returns (address) { }
Teturn _owner;
} function owner() public view virtual returns (address) {
return _owner;
function _checkOwner() internal view virtual { }
require(owner() == _msgSender(), "Ownable: caller is not the owner"); e ——
function _checkOwner() internal view virtual {
if (owner() 1= _msgSender()) {
function renounceOwnership() public virtual onlyOwner { Tevert OwnableUnauthorizedAccount(_msgSender());
_transferOwnership(address(0)); }
} }
function transferownership(address newowner) public virtual onlyowner { function renounceOwnership() public virtual onlyowner {
require(newOwner |= address(®), "Ownable: new owner is the zero address"); _transferOwnership(address());
_transferownership(newowner) ; }
}

function transferownership(address newowner) public virtual onlyOwner {

function _transferownership(address newowner) internal virtual { if (newowner == address(0)) {
address oldOwner = _owner; revert OwnableInvalidOwner(address(@));
_Owner = newowne:
emit OwnershipTransferred(oldowner, newowner); _transferOwnership(newowner);

} }

function _transferownership(address newowner) internal virtual {
address oldOwner = _owner;
_oWner = newowner;
emit OwnershipTransferred(oldowner, newOwner);

.

Explicit imports, Custom errors, abi.encodeCall, bytes.concat, string.concat,
https://shared.hadriencroubois.com/slides/EthCC2023.pdf

More modern solidity

Catching up with the compiler

pragma solidity A
import utils/Context.s

abstract contract
address

event OwnershipTrai

constructor() {
_transferownership(_msgsender());
}

modifier onl:

}

function owner

}
function _

x _msgsendex(),
}
function

t)
)
function tra (address ne

(ne dress(2),

ner);

(address) {

pragma solidity A

import {Context} from stils/Context.s
abstract contract Owna text {
address i
horizedAccount (address account
(address own

event

ferred(address

constructor (address initialowner) {
_transferownership(initialowner);

i
modifier
=
function owner() ir
}
function _chec
(0

}

}

function renol

(@)

}
_transferOwnership(newOwner)
}
function

addre:

ip(address new

eInvalidowner (address

reviousOwner, address ewowner) ;

(address) {

)

Explicit imports, Custom errors, abi.encodeCall, bytes.concat, string.concat, ...
https://shared.hadriencroubois.com/slides/EthCC2023.pdf

ore modern solidity

Catching up with the compiler

pragma solidity A i pragma solidity A
import "../utils/Context.sol"; import {Context} from "../utils/Context.sol";

abstract contract O
address

abstract contract Ownal
address

evi) s ewOwner) t);
R reviousOwner, address ex) ;
_transfezOwnership(_msgSendex())
; ddress et
_transferOwnersh ner);
{ }
modifier onlyowner() {
} —checkounez();
function owner() irtu (address) { y
) - function owner() irtual (address) {
function _checkownex() al {) o
I (owner() == _msgSender(), "Ownable: caller is not the er”); —_—
} function _checkow ¢
(
function 1yowner { t(_msgSender());
tr l])) B
) }
function tr function ner {
ne is t S i
_transf }
}
,,,,, er {
function ip(address newowner) ¢

wner;

Explicit imports, Custom errors, abi.encodeCall, bytes.concat, string.concat, ...
https://shared.hadriencroubois.com/slides/EthCC2023.pdf

More modern solidity

Catching up with the compiler

pragma solidity A & pragma solidit
import utils/Context.sol"; import {Col sol”;
abstract contract Ow Context { abstract cor [

address _ H address

event OwnershipTransferred(address indexed previousOwner, address indexed newowner); error OwnableUnauthorizedAccount (address account);

error OwnableInvalidOwner(address owner);
0 { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
_transfexownexship(_msgsendex())

} ddress

Owners

{ }
modifier onlyowner() {
} _che ;
function owner() irtu (address) { y
) - function owner() irtual (address) {
function _checkowner() internal view virtual { }
Tequire(owner() == _msgSender(), "Ownable: caller is not the owner"); >
) function _ internal view virtual {
if (owner() 1= _msgSender()) {
function ip() irtual onlyOwner { revert OwnableUnauthorizedAccount(_msgSender());
tr 0 address(2)); }
) }
function transf (address newOwner) public virtual on: ner { function L) ner {
require(newOwner 1= address(2), "Ownable: new owner is the zero address”); _tr
_transferownership(newowner); }
}
function transferOunership(address newOwner) 1 onlyowner {
function ewowner) ¥ if (newOwner == address(0)) {

revert OwnableInvalidOwner(address(0));

Explicit imports, Custom errors, abi.encodeCall, bytes.concat, string.concat, ...
https://shared.hadriencroubois.com/slides/EthCC2023.pdf

More efficient solidity

Because we do care about gas

struct ProposalCore {
// --- start retyped from Timers.BlockNumber at offset ©x00 ---
uint64 voteStart;
address proposer;
bytes4 __gap_unusedo;
// --- start retyped from Timers.BlockNumber at offset 0x20 ---
uint64 voteEnd;
bytes24 __ gap_unusedl;
// --- Remaining fields starting at offset Ox40 ---------------
bool executed;

struct ProposalCore {
address proposer;
uint48 voteStart;
_— uint32 voteDuration;
bool executed;
bool canceled;

bool canceled;

Packing storage, using immutable variables, ...
https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Removing old code

Some of these might be reintroduced after a redesign (in 5.1 or later)

e Address.isContract e ERC20Snapshot

e Checkpoints.History e ERC20VotesComp

e Counters e ERC165Storage

e SafeMath e ERC777

e SignedSafeMath e ERC1820Implementer
e Timers e Escrow

e GovernorCompatibilityBravo e ConditionalEscrow

e GovernorVotesComp e RefundEscrow

e GovernorProposalThreshold e PaymentSplitter

e TokenTimelock (in favor of VestingWallet) e PullPayment

All cross-chain contracts (including AccessControlCrossChain)
All presets in favor of OpenZeppelin Contracts Wizard

)

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

https://wizard.openzeppelin.com/

Some things don’t change

We may not like it, but we need it.

/**

* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct

* mannexr, since when dealing with meta-transactions the account sending and

* paying for execution may not be the actual sender (as far as an application
* is concerned).

*

*

This contract is only required for intermediate, library-like contracts.
*f
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;

}

function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;

}

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Release candidate coming soon.
September 1st, 2023

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

What to expect after 5.0?

Some things we want to explore, but nothing in this list is guaranteed to happen

Utilities
e Account abstraction

® Onchain merkle tree construction
e UDVT for common patterns (Masks)

Governance
e More modules
e More modular design

DeFi
e New PaymentSplitter

Nonces (EIP-6077)
®\ TYPEHASH specific nonce
e | Parallel nonces through “tracks”

https://shared.hadriencroubois.com/slides/EthCC2023.pdf

Security
e AccessManager extensions
e Circuit breaker

Upgradeability
e Partial transpilation
e VTable Proxies

Tests
e Migration to ethers v6
e Migration of FV to CSVL2

Support the future of ethereum
e Transient storage
e Storage structures for a post-Verge network

@openzeppelin/contracts
docs.openzeppelin.corr
forum.openzeppelin.con
defender.openzeppelin.corr

Questions?

y A OpenZeppelin

openzeppelin.com

