TP n°3 - Systèmes dynamiques

Retrouvez tous les énoncés et les corrections des TPs sur ma page personnelle :

http://perso.ens-lyon.fr/hadrien.croubois/

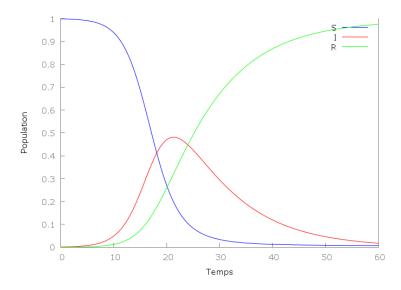
Soucieux d'anticiper l'évolution des épisodes épidémiques, les bio-informaticiens ont mis au points de nombreux modèles permettant de prédire l'évolution d'une épidémie à travers une population.

Nous nous intéresserons ici au modèle SIR, qui malgré sa grande simplicité et toujours utilisé, notamment lors des différents épisodes de grippe saisonnière.

Le modèle

Selon le modèle SIR, la population se divise en trois groupes :

- Les susceptible (S) : personnes pouvant développer la maladie;
- Les infectieux (I) : personnes infectés par la maladie et étant contagieux;
- Les immunisés contre réinfection (R) : personnes non guéri disposant d'une immunité.


Pour des modèles plus complexes on utilise parfois jusqu'à 7 groupes : S,E,I,D,R,M,C.

Le modèle SIR part de deux postulats de base :

- Les individus susceptible peuvent tombé malade au contact d'une personne infectée;
- Les personnes infectées finissent par guérir et développent une immunité.

Cela se traduit par un système d'équation différentielle

$$\begin{split} \frac{\partial S}{\partial t} &= -p * S * I \\ \frac{\partial I}{\partial t} &= p * S * I - a * I \\ \frac{\partial R}{\partial t} &= a * I \end{split}$$

Question 1 : Ces equations traduisent elles bien les postulats énoncé précédemment ?

Question 2: On notera que $\frac{\partial S}{\partial t} + \frac{\partial I}{\partial t} + \frac{\partial R}{\partial t} = 0$. Qu'est ce que cela implique?

- Question 3 : Proposer un programme pascal pour simuler l'évolution de effectifs des différents groupes au cours d'un laps de temps fini.
- Question 4 : A quel moment finir la simulation? Adaptez votre programme en conséquence.
- Question 5 : Quels sont, selon vous, les limites de ce modèle, comment l'améliorer.
- Question 6 : Connaissez vous des modèle proche utilisés en économie? Quels peuvent être les intérêts de tels modèles?