Parallel and Distributed Algorithms and Programs TD n°4 - Scheduling (2)

Hadrien Croubois Aurélien Cavelan hadrien.croubois@ens-lyon.fr aurelien.cavelan@ens-lyon.fr

2/12/2015

All documents are available on my website: http://hadriencroubois.com/#Teaching

– Part	1
	Anomalies with list scheduling

Consider the following graph, where each task is represented by a letter and has a number to indicate its weight.

Question 1

- a) What is the makespan obtained with a list scheduling based on the critical path, with 2 processors? Is it optimal?
- b) Suppose that the weight of each task is now decreased by one unit (A now has a weight of 7, B has a weight of 1, ...). Show that the makespan obtained with a list scheduling based on the critical path is increasing. Show that the makespan obtained with any list heuristic is increasing.
- c) Back to the initial weights. Suppose that we now have 3 processors. Show that the makespan obtained with a list scheduling based on the critical path is increasing. Show that the makespan obtained with any list heuristic is increasing.

Part 2

Scheduling on a set of heterogenous processors (without communications)

Consider a set n independent tasks $T_1, ..., T_n$ to be scheduled on p processors. We denote by p_{ij} the time to compute the task T_j on the processor P_i . In the case where all processors are simply going at different speeds (i.e. when $p_{ij} = p_j/s_i$, where s_i represents the speed of the processor i and p_j the amount of work needed for task T_j), the problem is more simple and we have the same result as in the homogeneous case. If not, the current best approximation is a 2-approximation.

Question 2

a) Show that deciding of the existence of a schedule whose execution time is 3 for a set of independant tasks $T_1, ..., T_n$ on processors $P_1, ..., P_p$ is an NP-complete problem. (You may consider a reduction to 3DM.)

Definition 1 (3-Dimensional-Matching (3DM)). Given $A = a_1, ..., a_n, B = b_1, ..., b_n, C = c_1, ..., c_n$ be three finite, disjoint sets, and $F = T_1, ..., T_n$ a subset of triples (a, b, c) such that $a \in A, b \in B$, and $c \in C$, find a subset F' of F such as for any two distinct triples $(a1, b1, c1) \in M$ and $(a2, b2, c2) \in F'$, we have $a1 \neq a2, b1 \neq b2$, and $c1 \neq c2$ (i.e. any element of $A \cup B \cup C$ appears in exactly one triple of F').

Part 3

Coffman and Graham scheduling

Consider 2 identical machines, n tasks $(T_i), i = 1 \dots n$ with same length and \prec a strict partial order on the tasks. We denote by $\sigma = (\mu, \tau)$ a schedule where $\mu(i)$ is the machine executing T_i and $\tau(i)$ is the start date of the execution of T_i .

When $T_i \prec T_j$, we say that T_j is a successor of T_i . In addition, when there is no task T_k such that $T_i \prec T_k \prec T_j$, we say T_j a direct successor of T_i . We define in the same way the notion of direct predecessor.

Question 3

a) Give an optimal schedule for the following graph.

Given a priority function p (assumed injective) on the tasks, we consider a list schedule $\sigma_p = (\mu_p, \tau_p)$ defined as follows: we choose among all free tasks the highest priority one and we execute it on machine 1. Similarly, the second highest priority task is executed on machine 2.

Question 4

- a) Which condition p must verify if we want the tasks to be executed in a compatible order with the precedance constraints?
- b) Show that the machine 1 is always active, and that if T_i is executed on machine 1, all the tasks T_j executed after (or at the same time) are of lower priority than T_i .

To simplify, we assume that in σ_p , when there is no free task to be executed on machine 2, we execute a "ghost" task without predecessor, and of lower priority than the initial tasks. We define a sequence of pair of tasks (D_k, J_k) , executed at the same time, respectively on machine 1 and 2. D_0 is the last task to be executed on machine 1, and similarly J_0 is the last task to be executed on machine 2. J_k (if it exists) is the latest task task to be executed before D_{k-1} on machine 2, which is of lower priority than D_{k-1} . We note F_k the set of tasks that are executed strictly after D_{k+1} and strictly before Dk, plus the task D_k , and we note E_k the tasks of F_k without predecessors in F_k .

Question 5

- a) Give for the last example, the schedule σ_p the tasks D_k and J_k and the set F_k and E_k , assuming that the priority p follows alphabetical order (increasing) on the name of the tasks.
- b) Same question with a priority compatible with the precedance constraints (to specify) leading to an optimal result.
- c) Show that any task of F_k is of higher priority than D_k and that any task T_i of F_{k-1} is successor of D_k . Deduce that the tasks of E_{k-1} are the direct successors of D_k and that any other direct successor of D_k has a lower priority.

We consider \prec_l the lexicographical order and we assume that the priority p verifies (in addition) the following property: $p(T_j) < p(T_i)$ if and only if $l(T_j) \prec_l l(T_j)$ (resp. $l(T_i)$) is the priority list of the direct successor of T_j (resp. T_i) ordered by decreasing order.

$Question \ 6$

a) Show that all the tasks of F_k (in articular those without a successor in F_k) are predecessor of all the tasks of F_{k-1} . Conclude by giving an algorithm that can build such a priority list and an optimal schedule.