
TD9: Convex Hulls and Digital Convex Hulls

In this TP, the idea is to implement a convex hull algorithm and to experiment its complexity
(number of edges) on digital objects.

Exercise 1 Orientation predicate

Question: Implement the Orientation(p, q, r) predicate as discussed in the lecture.

• To avoid numerical issues, we encourage you to consider points in Z2 on a digital domain
(instead of R2). Furthermore, it would help outputs since you will be able to reuse DGtal
board mechanism.

• To display a line in DGtal between Points p and q, you can use the following method of
the Board class: board.drawLine( p[0], p[1], q[0], q[1]);

Question: Test the Orientation predicate with an implementation of the segment-segment
intersection detection (cf lecture). Experiment your intersection test on all cases (regular inter-
section, alignement, no intersection, intersection point is a vertex, ...).

The rest of the TP focuses on the implementation and the experimentation of a convex hull
algorithm. You can choose any variant of the algorithm you want to implement. At the end we
would like you:

• To test the convex hull construction on point sets defined by the digitization (at a given
resolution h) of a disc (cf TP5) or an ellipse (cf DM) defined as digital sets.

• To plot (using gnuplot) the number of edges when h → 0 in log-scale. The aim is to
observe the N2/3 behavior we discussed in the lecture for convex hull in N ×N domains
(also, express the relationships between N,h and the slope of the best fitting straight line
in log-scale) ?

The first variant is a Graham’s scan implementation on the point set (O(n.logn)), the second
variant is based on the Melkman’s algorithm on the contour points (extracted using a contour
tracker) in O(n). Both should only use the Orientation(p, q, r) predicate and point coordinate
comparisons.

Exercise 2 (Rookie Mode) - Convex hull

Questions:

• Implement the Graham’s scan algorithm as described in the lecture:

– First, sort the points by polar angle (cf the qsort C function man page or the C++
std::sort to do the sort). As discussed in the lecture, you would just have to replace
the comparison function/functor by the Orientation predicate with fixed p0.

– The second step consists in a simple stack based removal (using for example std::queue,
cf previous TP).

Note that Graham’s scan can be speed up just considering border point and not interior
points (for disc/ellipse experiment).
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Exercise 2 (Advanced Mode) - Convex hull

Questions:

• To implement the Melkman’s algorithm, you will first have to construct a sequence of points
but you should have such function from previous TP. Implement Melkman’s technique (cf
lecture) using the std::deque as data structure to store the convex hull vertices.

The overall code is not more complex than Graham’s one but you’ll have to dig previous TP
for finding the appropriate border extraction code from a digital set.
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