Transport Layer Identification of P2P Traffic by T. Karagiannis, A. Broido, M. Faloutsos, and k. claffy

Hadrien Croubois

Computer Science Department of the ENS de Lyon

May 14, 2012

イロト イポト イヨト イヨト

ENS DE LYON

Introduction

- 2 Data Description
- 3 Payload Method
- 4 Non Payload Method
- **5** Conclusion

- 2 Data Description
- 3 Payload Method
- 4 Non Payload Method
- **5** Conclusion

• Data captured at an OC-48 link of a Tier 1 US ISP connection (2,48 Gbits/s)

• Data captured at an OC-48 link of a Tier 1 US ISP connection (2,48 Gbits/s)

• Data captured at an OC-48 link of a Tier 1 US ISP connection (2,48 Gbits/s)

• 4 datasets, from May 2003 to April 2004 (60-122 minutes each)

(日) (同) (三) (

ENS DE LYON

Datasets description

D09 - D10 : 44 bytes for each packet

Datasets description

D09 - D10 : 44 bytes for each packet • IP & TCP/UDP headers

Datasets description

D09 - D10 : 44 bytes for each packet

- IP & TCP/UDP headers
- 4 bytes of payload

(日) (同) (三) (

Datasets description

D09 - D10 : 44 bytes for each packet • IP & TCP/UDP headers • 4 bytes of payload D11 - D13 : 58 bytes for each packet

▲ 同 ▶ ▲ 国 ▶ ▲

Datasets description

D09 - D10 : 44 bytes for each packet

- IP & TCP/UDP headers
- 4 bytes of payload

D11 - D13 : 58 bytes for each packet

• 16 bytes of TCP/UDP payload

・ 同 ト ・ 三 ト ・

2 Data Description

3 Payload Method

4 Non Payload Method

5 Conclusion

Method Description

• Identification of P2P traffic based on characteristic bit string in packet payload.

Method Description

• Identification of P2P traffic based on characteristic bit string in packet payload.

P2P protocol	String	Trans. prot.	Def. ports
eDonkey2000	0xe319010000	TCP/UDP	4661-4665
	0xc53f010000		
Fasttrack	"Get /.hash"	ТСР	1214
	0×270000002980	UDP	
BitTorrent	"0x13Bit"	ТСР	6881-6889
Gnutella	"GNUT", "GIV"	TCP	6346-6347
	"GND"	UDP	

イロト イポト イヨト イヨト

ENS DE LYON

M1: Check source/destination port with table

M1 : Check source/destination port with table • Port matches \rightarrow Flow tagged as P2P

M1 : Check source/destination port with table Port matches → Flow tagged as P2P

$\label{eq:M2} M2: \quad Check \ the \ payload \ of \ each \ packet \ with \ table$

- $M1: \ \ Check \ source/destination \ port \ with \ table$
 - $\bullet~\mbox{Port matches} \rightarrow \mbox{Flow tagged as P2P}$
- M2 : Check the payload of each packet with table
 - $\bullet~{\sf String}~{\sf matches} \to {\sf Flow}~{\sf tagged}~{\sf as}~{\sf P2P}$

- $M1: \ \ Check \ source/destination \ port \ with \ table$
 - $\bullet~\mbox{Port matches} \rightarrow \mbox{Flow tagged as P2P}$
- $M2: \quad Check \ the \ payload \ of \ each \ packet \ with \ table$
 - $\bullet~{\rm String}~{\rm matches} \to {\rm Flow}~{\rm tagged}~{\rm as}~{\rm P2P}$
 - $\bullet~\mbox{No packet matches} \rightarrow \mbox{Flow tagged as non-P2P}$

- M1: Check source/destination port with table
 - $\bullet~\mbox{Port matches} \to \mbox{Flow tagged as P2P}$
- $M2: \quad \text{Check the payload of each packet with table}$
 - $\bullet~{\rm String}~{\rm matches} \to {\rm Flow}~{\rm tagged}~{\rm as}~{\rm P2P}$
 - $\bullet~\mbox{No}$ packet matches $\rightarrow~\mbox{Flow}$ tagged as non-P2P
- M3 : For P2P flow identified at step M2, record sources & destination IP

9/19

イロト イポト イヨト イヨト

ENS DE LYON

- $M1: \ \ Check \ source/destination \ port \ with \ table$
 - $\bullet~\mbox{Port matches} \to \mbox{Flow tagged as P2P}$
- M2 : Check the payload of each packet with table
 - $\bullet~{\rm String}~{\rm matches} \to {\rm Flow}~{\rm tagged}~{\rm as}~{\rm P2P}$
 - $\bullet~\mbox{No}$ packet matches $\rightarrow~\mbox{Flow}$ tagged as non-P2P
- M3 : For P2P flow identified at step M2, record sources & destination IP
 - For all non P2P flows that contain one of these IP
 - \rightarrow Flow tagged as possible-P2P

イロト イポト イヨト イヨト

ENS DE LYON

- $M1: \ \ Check \ source/destination \ port \ with \ table$
 - $\bullet~\mbox{Port matches} \to \mbox{Flow tagged as P2P}$
- $M2: \quad \text{Check the payload of each packet with table}$
 - $\bullet~{\rm String}~{\rm matches} \to {\rm Flow}~{\rm tagged}~{\rm as}~{\rm P2P}$
 - $\bullet~\mbox{No}$ packet matches $\rightarrow~\mbox{Flow}$ tagged as non-P2P
- M3 : For P2P flow identified at step M2, record sources & destination IP
 - For all non P2P flows that contain one of these IP
 - \rightarrow Flow tagged as possible-P2P

To minimize false positives, FTP, SSL, DNS & online gaming flows are excluded from M3

イロト イポト イヨト イヨト

FNS DF LYON

• HTTP requests : P2P protocols using HTTP requests are not identified

- HTTP requests : P2P protocols using HTTP requests are not identified
- Encryption : encrypted payload is not identified

- HTTP requests : P2P protocols using HTTP requests are not identified
- Encryption : encrypted payload is not identified
- Other P2P protocols : unreferenced P2P protocols are not identified

Limitations

- HTTP requests : P2P protocols using HTTP requests are not identified
- Encryption : encrypted payload is not identified
- Other P2P protocols : unreferenced P2P protocols are not identified
- Unidirectional trace : acknowledgement stream of a P2P download is not always visible because of asymmetric routing

• □ ▶ • • □ ▶ • • □ ▶ •

ENS DE LYON

3 N

- 2 Data Description
- 3 Payload Method
- 4 Non Payload Method

• The non payload method only examines packet headers to detect P2P flow.

- The non payload method only examines packet headers to detect P2P flow.
- As only {IP, port} pairs are the only available, two heuristics, based on the observation of P2P connection patterns, are used

イロト イポト イヨト イヨト

ENS DE LYON

TCP/UDP IP pairs heuristic

• Most P2P protocols use both TCP and UDP protocols

TCP/UDP IP pairs heuristic

- Most P2P protocols use both TCP and UDP protocols
- Other applications using both TCP and UDP protocols are rare and use specific ports

イロト イポト イヨト イヨト

ENS DE LYON

TCP/UDP IP pairs heuristic

- Most P2P protocols use both TCP and UDP protocols
- Other applications using both TCP and UDP protocols are rare and use specific ports

TCP/UDP IP pairs heuristic

{IP,port} using both TCP and UDP protocols (whose ports are not in the exclude list) are considered as P2P traffic

• □ ▶ • • □ ▶ • • □ ▶ •

ENS DE LYON

Excluded ports for TCP/UDP IP pairs heuristic

Ports	Applications	
135,137,139,445	NETBIOS	
53	DNS	
123	NTP	
500	ISAKMP	
554,7070,1755,6970,5000,5001	streaming	
7000,7514,6667	IRC	
3531	p2pnetworking.exe	

{IP,port} pairs heuristic

{IP,port} pairs heuristic

- IPs for which the number of distinct connected IPs is equal to the number of distinct connected ports are considered P2P hosts
- IPs for which the difference between connected IPs and ports is large (e.g., larger than 10) are considered non P2P hosts

(日) (同) (三) (

False positives

Mail

False positives

- Mail
- DNS

False positives

- Mail
- DNS
- Gaming

False positives

- Mail
- DNS
- Gaming
- Malware

False positives

- Mail
- DNS
- Gaming
- Malware
- Other heuristics (One-packet pairs, MSN messenger server ...)

(日) (同) (三) (

ENS DE LYON

- 2 Data Description
- 3 Payload Method
- 4 Non Payload Method

• Easy to understand, efficient method

- Easy to understand, efficient method
- General method (not specific to some P2P protocols, unaffected by encryption)

- Easy to understand, efficient method
- General method (not specific to some P2P protocols, unaffected by encryption)
- Doesn't need to look at payload

(日) (同) (三) (

ENS DE LYON

• Any questions?

