
Fast Dynamic Image Based Lighting for Mobile Realistic AR

Hadrien Croubois∗, Jean-Philippe Farrugia†, Jean-Claude Iehl‡

LIRIS - Lyon1 University

Figure 1: Real-time mobile realistic augmented reality running real time on a high end mobile phone

Abstract

This paper presents a mobile implementation of realistic augmented
reality using a simple image based lighting method. The front cam-
era of the mobile device is used to interactively capture and update
an environment map. Then, by making some reasonable assump-
tions on local geometry and object reflectance function, incident
lighting is integrated in real-time. The method handles dynamic
environment and soft shadows, and runs at real-time framerates on
high-end devices.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: augmented reality, real-time rendering, image-based
lighting, environment acquisition

1 Introduction

The term ”realistic augmented reality” (realistic AR) is used to
qualify an application where convincing interactions between real
and virtual elements are computed. This aspect is important for user
immersion: illumination computations add important visual cues to
the scene (shadows, object shading, caustics. . . ), notably enhanc-
ing global scene comprehension. The main scientific issue of re-
alistic AR is common illumination, which is a common rendering
pipeline for virtual and real (acquired) data. Achieving common
illumination in a general context is hard: geometric and photomet-
ric information of the environment has to be acquired and trans-
formed, potentially at interactive rates, to fit the rendering pipeline.
This usually needs specialized hardware (for acquisition) and com-
plex algorithms (for transformation), and is rarely compatible with

∗e-mail:hadrien.croubois@ens-lyon.fr
†e-mail:jean-philippe.farrugia@univ-lyon1.fr
‡e-mail:jean-claude.iehl@univ-lyon1.fr

realtime constraints. Alas, mobile platforms like smartphones or
tablets, which are an ideal application playground for realistic AR,
have limited computational ressources.

This paper presents an environment map acquisition method and an
image-based rendering model that are suitable for mobile realistic
AR. The front camera of a mobile device is used to interactively
capture and update the environment map. Then, by making some
reasonable assumptions on local geometry and virtual object mate-
rial model, the rendering equation may be simplified enough to an-
alytically integrate incident lighting in real-time by exploiting the
filtering capacities of the graphics hardware. The method handles
dynamic environment and soft shadows, and is simple enough to
be implemented on mobile operating systems. It runs at real-time
frame rates on high-end devices.

This document will be organized as follows: following this intro-
duction is a short overview of related work on image-based lighting
and realistic AR. The third section will introduce our contributions
on environment capture and image-based lighting. The fourth sec-
tion will present some results, along with limitations and potential
extensions in the fifth section. A brief conclusion will end the paper
in the sixth section.

2 Related work

Realistic augmented reality deals with coherent virtual object inser-
tion into real environments with consistent lighting. As pointed by
Jacobs and Loscos [?], major progresses were made, benefiting of
improvements in acquisition systems or rendering methods. Early
methods used manual light modeling (Fournier et al. [?], Drettakis
et al. [?], Loscos et al. [?], Haller et al. [?]). Although, manu-
ally modeling light sources is a tedious and time consuming work,
which is not suited for mobile usage.

Environment maps are a convenient way to capture and represent
incident lighting. Debevec [?] was the first to describe the use of
environment map as a light source model. He acquires an environ-
ment omnidirectional image using HDR imaging and a gaze ball.
Sato et al. [?] used a similar rendering technique but acquire the
environment with a couple of fisheye lens cameras. Numerous sim-
ilar works were proposed (Agusanto et al. [?], Supan et al. [?],
Grosch [?]) but all of them need complex calculations and/or spe-
cialized hardware, which is not suited for mobile implementation.

Potential solutions exists for handling complex lighting within an



mobile AR context. Snyder [?] propose explicit solutions for shad-
ing an object with extended light sources, providing that the BRDF
follows a specific model (Lambert or Phong power-law model).
This work is interesting but only applies on uniform light sources.
Lighting with an environment map has been tackled by McGuire et
al.[?] by exploiting the fact that modern graphic processors allows
the filtering of cube-maps. Similarly to Snyder’s work, this work
assumes that the BRDF is a specific one (normalized Blinn-Phong).
The main issue of this method is that lighting contributions are only
integrated on one face of the cube-map, leading to visual artefacts
on glossy surfaces when the cube-map faces are very different. Fi-
nally, Calian et al.[?] proposed an alternative by capturing shading
instead of lighting with a specific probe with a custom geometry de-
signed to fit different lighting computations. Although computation
cost is low, the material of the virtual object has to be identical to
the probe’s, therefore limiting possible appearances. Furthermore,
a specific target has to be built for every lighting configuration.

None of these techniques suit our needs for mobile AR: they are
too restrictive or too computationally expensive, and all of them
use intrusive probes or gaze balls. In this paper, we propose a
method which dynamically capture an environment map with cell-
phone cameras and lights a virtual object with it in real time. We
extended mcGuire’s to take into account every face of the cube-map
in the incident luminance integration. We demonstrate that exten-
sions to anisotropic models are also possible. This method has been
implemented on a high-end tablet using OpenGL ES 3.0 and runs
at real-time framerates.

3 Contribution

This section will introduce our method for real-time mobile AR.
We track the device with specifically designed frame markers using
QRCodes. The surrounding lighting environment is dynamically
captured and updated using the device’s front camera. The virtual
object is then directly lit with this environment map using an ex-
tended version of mcGuireet al.’s work[?]. Finally, projected shad-
ows are approximated with sphere proxies. We will now go into
details of these points.

3.1 Environment capture

Incident lighting is modeled using environment maps. Of course,
one could always create these maps using offline methods: a large
number of applications facilitate the creation of panoramas on mo-
bile devices. For example, Cyclorama[?] uses the device’s vibrator
to automatically rotate on a slick surface while aligning successive
captures. One can easily add a wide angle lens to obtain environ-
ment maps.

Figure 2: Dynamic lighting capture.

Although, offline capture assumes that the lighting environment is
static, which is rarely the case in interactive applications. We pro-

pose to use the front camera to update the environment map. Since
the camera is calibrated, and assuming the lighting is far enough,
we may infer incident lighting direction for each pixel of a frame
captured by the front camera and reproject it on the environment
map, as shown on figure 2.

3.2 Image-Based Lighting

The ultimate goal of every rendering algorithm is the resolution of
the rendering equation[?]. For any point p of our virtual object, the
objective is to compute the output luminance from p in direction
ω0:

L(p, ω0) = Le(p, ω0)+

∫
Ω+

f(p, ω0, ωi)Li(p, ωi)cosθidωi (1)

with Le(p, ω0) being the emitted luminance, f(p, ω0, ωi) being the
reflectance function, Li(p, ωi) being the incident luminance and ωi

being the incident direction.

In our application, incident luminance Li is represented with an
environment map. For implementation purposes, this environment
map is mapped on a cube (cube-map) around the virtual object.

The literature on how to compute environment lighting is abundant
(see [?] for an overview). The regular way to evaluate this quantity
is to sample the hemispherical domain to obtain point light sources
across the environment map. However, this is too costly for mobile
usage.

A faster solution is to approximate the convolution of the incident
luminance by filtering the environment map. If the reflectance func-
tion is simple enough, or easily separable in simple components, the
hardware filtering capacities of the graphics hardware may be used.
MacGuire et al.[?] demonstrated that cosine power law filtering
may be approximated by the mipmap levels of the cube-map. For a
cosine power law with exponent s, the corresponding mipmap level
m is given by (see paper for details):

m = log(w
√

3)− 0.5 ∗ log(s+ 1) (2)

Therefore, any reflectance function that has cosine power law com-
ponents may be used with this method. MacGuire et al. propose to
use the normalized Blinn-Phong reflectance model:

f(ωo, ωi) =
1

π
(kL + kG

s+ 8

8
max(

ωi + ωo

‖ωi + ωo‖
.n, 0)s) (3)

When replacing and integrating this reflectance function in the ren-
dering equation, the diffuse Ld(p, ω0) and glossyLg(p, ω0) com-
ponents may be separated :

L(p, ω0) = Le(p, ω0) +
1

π
(kLLd(p, ω0) + kGLg(p, ω0)) (4)

with
Ld(p, ω0) =

∫
Ω+

Li(p, ωi)cosθidωi (5)

MacGuire et al. assume that the diffuse component Ld is propor-
tional to the lowest level of the mipmap, and the glossy compo-
nent is proportional to the sample in the mipmap level computed by



Figure 3: Result of our image based lighting method. Left: glossy BRDF. Right: diffuse BRDF.

equation 2. Therefore, computing luminance at pointp is just the
combination of two texture fetches.

However, this method may lead to visible artefacts: for the diffuse
component, a single face of the cube-map is chosen and is the only
one to contribute to shading. If two adjacent faces of the cube-map
are very different at the lowest level, a discontinuity will appear in
the diffuse component of the object. We propose an improvement
of this method to take into account every visible faces from point p.

To evaluate this, let us calculate the solid angle described by a par-
tially visible face F :

ΩF (~n) =

∫∫
F

Hs(~ω.~n)

‖~ω‖3 dω (6)

with Hs being the Heavyside function. The contribution of each
face may then be calculated by integrating the normalized dot prod-
uct ~ω.~n
‖~ω‖ with the solid angle on the whole face :

WF (~n) =

∫∫
F

~ω.~n

‖~ω‖ ×
Hs(~ω.~n)

‖~ω‖3 dω

=

∫∫
F

~ω.~n×Hs(~ω.~n)

‖~ω‖4 dω (7)

Therefore, assuming incident diffuse light from face ~F Ld(~F ) and
pre-computed ambiant occlusion factor PV(p) are known, the dif-
fuse luminance Ld(p, ~n) of point P with a normal ~n is given by
:

Ld(p, ~n) =
PV(p)

π

∑
F∈Faces

Lid(~F )WF (~n)

(8)

Equation 8 is computed on each vertex and has to be rapidly evalu-
ated. SinceWF (~n) depends roughly only on θ (θ and φ being euler
angles), a numerical approximation may be obtained by a function
parametrized by ~n. ~F = cos(θ).

approx : cos(θ) 7→
[
max (.75 + cos(θ), 0)

]2
1.75

(9)

Despite its simplicity, equation 9 is very close to WF (~n) and may
be used in equation 8 with reasonable precision.

3.3 Shadowing

There is numerous evidences that shadows enhance scene compre-
hension, especially on spatial relationships between objects (Mad-
sen et al.[?], Sugano et al.[?]). Although, shadowing a complex

~S
α

ω

Figure 4: Sphere decomposition of 3D objects and obstruction
computation

geometry with complex lighting is not an easy task. For this pur-
pose, we propose to replace the geometry with sphere proxies to
simplify occlusion computation. We will assume that the local ge-
ometry around the virtual object may be approximated by a hori-
zontal plane. The virtual object lies onto this plane, and shadows
will be projected on it. To compute soft shadows, one has to eval-
uate environment visibility for every point of the horizontal plane.
By replacing the actual geometry with sphere proxys, the obstructed
part of the environment map may be calculated and incident light-
ing may be dimmed accordingly (see figure 4). Additional details
are given in the supplemental material. Figure 3 shows some results
of our image-based rendering method with shadows.

4 Results

4.1 Implementation details

This work has been developed in C++ using OpenCV 2.4 for track-
ing, OpenGL 3.0 for graphics and GLSL 3.0 for shaders. For con-
veniency reasons, it was initially developed for desktop PC under
Linux and was later ported on iOS devices using OpenGL ES 3.0.
The port was greatly facilitated by Objective C’s compatibility with
C++ and the similarity between OpenGL ES 3.0 and OpenGL 3.0 .
The chosen target hardware is high-end iOS devices, like iPhone 5S
and iPad Air, which are to this date the only Apple devices that can
handle OpenGL ES 3.0. Although, porting the application on older
devices should be possible by taking into account the differences
between OpenGL ES 2.0 and 3.0.

4.2 Results with dynamic environment map capture

We will now demonstrate the capacity of our system to cope with
dynamic lighting environments. Figure ?? shows a time lapse se-
quence of this ability. On the first frame, the virtual object is fully
lit by the environment. On the second frame, the operator places
his finger on the front camera of the device. One may see that the
lighting modification is reported on the shading of the object. This
application also runs on a iPad Air at approximately 25 frames per
second, the frame resolution is 640 × 480. Additional results may
be found in the supplemental material.



Figure 5: Results with dynamically updating envmaps.

5 Discussion and Possible Extensions

As said in section 3.2, the BRDF of the virtual object has to follow
the Blinn-Phong model. This is the price to pay for real-time shad-
ing with complex light sources. A extension to micro-facet model
BRDF seems doable by evaluating the anisotropic integration of
the environment map, using hardware texture gradients for exam-
ple. Although, at present time, texture gradients only apply on a
single face of the cube-map and does not handle face continuity.

Another limitation of our method is that object lighting is repre-
sented by an environment map, naturally assuming distant lighting.
An extension of this is possible like shown by Brennan[?] by using
a crude approximation of the scene geometry (a simple bounding
box or sphere may be sufficient) and adjusting the object’s texture
coordinates relatively to its position. With this method, the lighting
is not considered infinitely distant anymore and the parallax effect
is taken into account. Although, the lighting computation are more
complex since the light direction is not the same for every point
of the object, making our computations for shading in section 3.2
invalid.

Mobile implementation also presents some limitations due to hard-
ware restrictions. First, shadow evaluation with sphere proxies is a
little too costly for mobile devices: the decomposition of the geom-
etry has to be limited to a reasonable number (around 50) of spheres
to maintain an interactive framerate. Second, at present time, it is
impossible to stream video from both cameras (front and back) at
the same time on iOS, probably for efficiency and bandwidth rea-
sons. To cope with this, we chose to mainly use the back-facing
camera and to rapidly switch every five seconds on the front-facing
camera to take a picture. Therefore, the environment map is only
updated every five seconds and the video stream briefly freezes dur-
ing this capture. Future updates of software and/or hardware will
probably correct this issue.

Finally, in current implementation, captured images are low dy-
namic range (LDR). Strong light sources may not be identified in
the environment map and no hard shadows will be rendered. High
dynamic range (HDR) acquisition is a tough problem in real-time
applications: the traditional method involves successive captures,
possibly with quite long exposure times and naturally limiting the
update rate of the environment map. Some works have been done
on HDR acquisition with a single frame (Li et al.[?], Meylan et
al.[?], Rempel et al.[?] but most of them are too slow or too ap-
proximative to fit mobile AR requirements. One potential solution
for this problem may be to incorporate knowledge of the environ-
ment in the HDR reconstruction: by segmenting the LDR image
in high luminance zones, one may identify potential light sources
by knowing the context. For example, for interior scenes, chances
are high that light sources are on the ceiling (light bulbs and neon
tubes) and/or on the sides (windows). An artificial energy enhance-

ment may be applied to these zones when reconstructing the HDR
information.

6 Conclusion

A new solution for common illumination between real and virtual
objects was presented in this paper. Assuming distant lighting,
Blinn-Phong BRDF and planar local geometry, it handles both dy-
namic environments and soft shadows while being simple enough
to run on a modern mobile device. It is achieved at real-time frame
rates, leaving some computational ressources for other purposes.
Finally, as shown in previous section, numerous extensions are pos-
sible.


