
Communication-aware task placement for

workflow scheduling on DaaS-based Cloud

Hadrien Croubois, Eddy Caron

Univ. Lyon, ENS de Lyon, Inria, CNRS, Université Claude-Bernard Lyon 1, LIP.

{firstname}.{lastname}@ens-lyon.fr

Abstract—Cloud platforms have emerged as a leading

solution for computation. In the meantime, large compu-

tations have shifted from big parallel tasks to workflows

of smaller tasks with data dependencies between them.

Task placement is a major issue on Cloud platforms,

especially considering the impact of data exchanges on

cost and makespan. In this paper, we investigate the

consequences of network contention regarding the use

of existing scheduling policies on DaaS-based platforms

(DaaS for Data as a Service). We show here that the

legacy algorithms use inefficient network models. We

then modify those algorithms using a new model inspired

by DaaS-based Cloud platforms. Thus, we manage to

statically pack tasks so that a batch scheduler could de-

ploy many real-time submitted workflows on a dynamic

Cloud platform. Simulations of Fork-Join workflows

deployment using SimGrid show that our algorithm

reduces computation time as well as deployment costs.

Index Terms—workflow, Cloud, scheduling, clustering

I. INTRODUCTION

Nowadays, computing platforms are used to execute

increasingly complex operations composed of multiple

interdependent tasks. Examples of such workflows are

given in [1]. These can be submitted in real time by

multiple users. Meanwhile, computing platforms have

moved from institution-owned clusters to externalized

Clouds. This new computing paradigm calls for new

mechanisms to efficiently schedule tasks and provision

resources.

Previous scheduling mechanisms were designed to

statically schedule workflows on fixed computing clus-

ters, and focused on communication cost. On Cloud-

based platforms, recent approaches now focus on other

issues such as Virtual Machine (VM) provisioning,

resource sharing among users and failure handling.

As Cloud instances can migrate and the topology

of the network is usually unknown, it is difficult

to estimate communication cost and to tweak task

placement accordingly. A usual solution is to deal with

data locality and to migrate the environment.

Another argument against the use of task clustering

algorithms is that it requires knowledge of all the jobs.

In a dynamic context, the whole schedule would have

to be recomputed for every new job submitted to the

platform, leading to poor platform scalability. On the

other end of the spectrum, batch scheduling algorithms

are scalable in the context of many users submitting

many independent jobs in real time.

Still, many Cloud solutions rely on Data as a Service

(DaaS) tools for communication. Among such tools

are Amazon S3, Dropbox, NFS and others. On an

otherwise distributed infrastructure, DaaS are central-

ized elements that somehow constrain the level of

parallelism. In fact, the capacity of a node to send and

receive files from the rest of the network is limited

by the bandwidth available between this node and

the DaaS. Even with a distributed structured DaaS,

September 19, 2017 DRAFT



availability of a specific piece of data to all nodes is

bounded by the capacity of the nodes to access the data

on different instances of the DaaS and consequently

by the DaaS inner synchronization mechanisms. The

whole DaaS can therefore be seen as a single entity

potentially distributed among multiple machines.

To build an autonomous workflow manager for

the Cloud, we focused on task packing. Our idea

was to analyze each job workflow and to determine

tasks packing for optimal placement without any

prior knowledge of the platform current deployment.

The resulting information could be useful to a batch

scheduler downstream. Furthermore, if this workflow

analysis could be done independently of the status of

the platform, then it would not be necessary to recom-

pute it with each subsequent change in the platform

deployment, therefore ensuring good scalability.

In this paper, we focus on static clustering al-

gorithms for workflows with data dependencies. We

start by building workflow and platform models (Sec-

tion III). Later, we show how legacy algorithms be-

have on cloud platform (Section IV), and propose an

evolution based on a Cloud-inspired network topology

(Section V). We then see how this new clustering

method can help to pack tasks for efficient workflow

deployment in the Cloud (Section VI).

II. RELATED WORK

Since the dawn of parallel and distributed systems,

the scheduling issue has been considered in many con-

text and with many different objectives, each relevant

to some platform specificity. In this section we will

give an overview of the existing approaches.

A. Clustering algorithms

The goal of clustering algorithms is to pack tasks

into clusters prior to any execution. Given a global

vision of the platform and the tasks to execute, a

clustering is a mapping of tasks to the nodes of

the platform, with all tasks being executed on the

same node constituting a cluster. With this approach,

expensive computation is needed to achieve a very

efficient clustering, yet any change on the platform or

the tasks to execute would lead to the whole clustering

being recomputed.

In this category we find algorithm dealing with both

homogeneous platforms [2]–[5] and heterogeneous

platforms [6].

B. Batch scheduling for Cloud

The issue of the Cloud batch is the scheduling

of many independent tasks and services, submitted

dynamically, on heterogeneous platforms. One of the

required key features is to have the addition of new

tasks to the schedule be a very simple operation, thus

ensuring the scalability of the system. Other elements,

such as tasks priorities or energy consumption, can

be used to make the schedule fit ones’ objectives.

On Cloud platforms, batch schedulers also adjust the

platform size in order to meet all the deadlines while

limiting the deployment cost [7].

While some tools handle graph deployment, the

few that try to optimize placement based on data

dependencies have poor network modeling [8].

C. Workflow deployment on Cloud

It is still an open problem to efficiently consider

the constraints imposed by the real-time submission

of workflows while handling the dynamism of Cloud

platforms. All previous contributions focused on spe-

cific issues while leaving other aspects unconsidered.

A survey showed that most contribution did not

consider the impact of data transfers [9]. Moreover,

when this issue was considered, it was on simplified

DAGs which failed to accurately model the whole

extent of real applications.

We have identified two recent contributions which

depict the current state of the art.

Mao et al. [10] dealt with a single workflow in

which the tasks have different resources requirements.

September 19, 2017 DRAFT



Their algorithm not only packs tasks but also deter-

mines which type of nodes to deploy. However, this

result does not account for multiple workflows. It also

does not handle contexts in which communications go

through a DaaS. We might be interested in investigat-

ing the underlying communication model in respect of

the targeted platforms’ behavior.

Malawski et al. [11] handled multiple dynamically

submitted workflows composed of single-threaded

tasks. In this work, the Cloud platform used for exe-

cution is dynamic but has an upper bound. Therefore,

some workflows – with a lesser priority – can be

dropped if the platform cannot be extended as required.

Similarly to Mao et al., the communication model used

in this paper does not match our observations of DaaS-

based platforms.

III. WORKFLOW AND PLATFORM MODELING FOR

COMMUNICATION-AWARE SCHEDULING

Scheduling algorithms rely on specific definitions of

resources and of the way tasks are executed on these

resources. Before discussing the scheduling strategies

themselves, we have to define the different objects we

will be dealing with.

A. Generic network topology for DaaS-based Cloud

platforms

It is commonly accepted that characterizing platform

topology is a real issue on the Cloud. VM can migrate

and resources such as routers can be shared with

other users. Still, in an effort to build a scheduling

policy both task and data transfer-oriented, we need to

understand and predict the behavior of data transfers

on this platform. As discussed in the introduction,

communicating through a DaaS induces a centraliza-

tion of the communications.

Our analysis is that this centralization will lead

to contention at the links between a node and the

DaaS. While the DaaS is a critical element, commonly

located near the center of the network, the computing

Node 1 Node 2 Node 3 ... ... ... Node n

DaaS

Network Core

Fig. 1. A generic model of DaaS-based network topology.

stations can potentially be very far from it. This led us

to a model where a node ability to place and retrieve

data from the DaaS is constrained by the bandwidth

between the node itself and the code of the network.

This topology is illustrated in Fig. 1.

This model is generic enough for it to be inde-

pendent of the actual Cloud deployment and of VM

migrations, as long as the nodes bandwidth is not

overestimated.

B. Data-centric representation of workflows

Workflows are usually represented as weighted

graphs of tasks, with the weights on the nodes rep-

resenting the computational cost of the tasks (in flops

– floating point operations –) and the weights on the

edges representing the cost of the communications

(in bits of data transferred). However, as we moved

to DaaS-based Cloud platforms, our representation of

workflows needs to evolve accordingly.

While previous representations focused on the

amount of data to be transferred between tasks, a more

relevant approach would be to focus on data objects.

If we consider a fork-join distribution pattern, there

is a major difference between sending n different

pieces of data to n different agents and sending a

single piece of data to the same n different agents.

While in the second case we have a single upload from

the initial task to the DaaS and n parallel downloads

from the DaaS, in the first case we have a single task

September 19, 2017 DRAFT



>

>>> > >

>

(a) Legacy representation

>

>>> > >

>

(b) Our data-centric representation

(single data upload)

>

>>> > >

>

(c) Our data-centric representation

(multiple data upload)

Fig. 2. Representation of a fork-join DAG with n = 5 independent jobs.

(the initial task) uploading the n different pieces of

data to the DaaS at the same time, which would cause

contention between the initial task and the core of the

network where the DaaS is located.

Therefore, the first contribution of this paper is an

extended “data-centric” representation of workflows

which includes details about the different pieces of

data produced and consumed by the tasks. Our rep-

resentation (Table I) is an acyclic-oriented bipartite

graph, with nodes from one side representing weighted

tasks and nodes from the other representing pieces of

data weighted by their size. Edges have no weight

and only represent dependencies between pieces of

data and their producers/consumers. Fig. 2 shows how

two very different communication patterns have the

same legacy representation. According to our network

model, we expect bouts of network congestion when

a single task uploads or downloads multiple files.

Thus, we can expect some contention for the final task

downloads in both cases (Fig. 2b and Fig. 2c). Yet,

only the second case (Fig. 2c) should undergo upload

contention for the initial task.

IV. LEGACY COMMUNICATION-AWARE

SCHEDULING ALGORITHMS BEHAVIOR ON

CURRENT PLATFORMS

Historical static scheduling algorithms such as

DCP [5] were designed to take into account the impact

of communication latency on workflows deployment.

In this section we will see how they perform on DaaS-

based platforms and analyze why they do not stand up

to the task.

TABLE I

WORKFLOW AND CLUSTERING NOTATIONS.

Notation Space Description

T Set of all tasks

ω(t) T 7→ R Computational cost of t

D Set of all pieces of data

d.src T Producer of data d

d.dst P(T ) Consumers of data d

ω(d) D 7→ R Communication cost of d

C T 7→ VMs Clustering

A. Contention on DaaS-based Cloud platforms

A common distribution pattern in workflows is the

fork-join mechanism. In such context, an initial task

is to send pieces of data to n independent tasks.

Afterwards, those n tasks are sending back the results

to a final task. We assume here that the n pieces sent

by the initial tasks are different pieces of data of the

same size.

When scheduling such a DAG using DCP, the

algorithm takes action to achieve a high level of par-

allelism and thus places most tasks on distinct nodes.

However, when executing the resulting task placement

on a Cloud infrastructure, we see that communication

September 19, 2017 DRAFT



sequential parallel
0

2

4

6

8

10

12

14

T
im

e
 (

s
)

Upload to DaaS of 16 files (64MiB each)

independant sequential parallel
0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

s
)

independant

Download from DaaS of 16 files (64MiB each)

Fig. 3. Transfer times of 16 files from and to a DaaS: (left

to right) predicted by DCP, experimental for sequential transfers,

experimental for parallel transfers. Experiments were carried out

using Grid’5000 testbed. Used nodes were on the Sagittaire cluster

and the DaaS was a 10G chunk reserved on storage5k.

between the first task and the DaaS (upload of n files

to the DaaS) and between the DaaS and the final

task (download of n files from the DaaS) drastically

suffers from contention. Fig. 3 shows that while DCP

plans for all transfers to be simultaneous, the network

congestion drastically reduces the performances of

both upload to the DaaS and download from the DaaS.

This results in transfer times about n times slower then

predicted by DCP.

This gap between the communication model un-

derlying DCP and the reality of current distributed

platforms, in addition to the difficulty of handling the

dynamic submission of workflows by users, explains

why such scheduling algorithms are not efficient for

tasks placement on Cloud platforms.

While other static scheduling algorithms have im-

proved on DCP in many aspects, communication mod-

elization is not among them. Algorithms like HEFT

or CPOP have the benefit of handling heterogeneous

platforms. However their design is based on the as-

sumption of a limited number of ressources and thus

do not match the cloud paradigm where new large

instances are always available. Focusing on DCP helps

us study the communication aspect of things without

getting in the trouble of dealing with specificities that

would not fit the cloud paradigm.

Algorithm 1 DCP static scheduling algorithm
C ← empty clustering . (one node per task)

compute BL and TL for each task using C

while ∃ unmarked dependency between tasks do

(u, v)← edge with the largest path length (most critical). Resolve ties

by edge size (select largest).

C′ ← C.mergeClusters(u, v)

compute BL′ and TL′ for each task using C′

if DCPL(BL′, TL′) ≤ DCPL(BL, TL) then

(C, TL,BL)← (C′, TL′, BL′)

end if

mark (u, v)

end while

return C

B. Dissecting the network model underlying the criti-

cal path computation

DCP relies on the computation of the critical path

and on the zeroing of critical dependencies (see Algo-

rithm 1). This critical path is determined through the

computation of the Bottom Level (BL) and Top Level

(TL) values for each task. Those values are used to

highlight the constraints from the DAG input to the

specified task and from this task to the DAG output.

In fact, those BL and TL computations account for

a worst-case scenario with respect to communication

latency. This implies that the computation of those

values is based on an implicit communication model.

c(u, v) =


0 if C(u) = C(v)

ω(u→ v) otherwise

(1a)

TL(v) =



0 if v has no predecessor

max
u∈pred(v)

(TL(u) + ω(u) + c(u, v),

availTL(C, v))

(1b)

BL(u) =



ω(u) if u has no successor

ω(u) + max
v∈succ(u)

(c(u, v) + BL(v),

availBL(C, u))

(1c)

September 19, 2017 DRAFT



The critical path computation used in DCP static

scheduling algorithm is as shown in Eq. 1 (with u and

v tasks in a DAG of tasks – workflow –, ω a weighting

function on the tasks and data and C a linear clustering

of the DAG)

From those values we can compute other metrics:

• Dynamic Critical Path Length (Makespan):
DCPL = max

t∈T
(TL(t) + ω(t)) = max

t∈T
(BL(t))

• Absolute Earliest Start Time:
AEST (t) = TL(t)

• Absolute Latest Start Time:
ALST (t) = DCPL−BL(t)

• Path Length (equal to DCPL for critical tasks):
PL(t) = TL(t) +BL(t)

We see that these formulas do not consider the pos-

sible impact simultaneous transfers could have on one

another. In fact they disregard any form of contention.

At first it looks like it considers a complete clique

network where any pair of nodes can exchange data

without being affected by the rest of the network, but

it is in fact even stronger than that as any number of

transfers between the same two nodes can take place

at the same time without them having to share the

bandwidth.

While such a topology could have made sense

when dealing with small clusters, the gap with new

distributed platforms is tremendous and explains the

incapacity of DCP to efficiently predict communica-

tions. This leads to poor performances of the resulting

task placements.

V. DCP EVOLUTION FOR DAAS-BASED CLOUD

INFRASTRUCTURES

In the previous section, we discussed the behavior

of DCP and its inadequacy to efficiently schedule

workflows on DaaS-based Cloud platforms. In this

section we will see how the models discussed in

section III can be used to improve DCP ability to

schedule workflows on modern platforms.

A. A communication model for Cloud infrastructures

Using the unmodified structure of the DCP algo-

rithm (see Eq. 1), our objective is to use the plat-

form and workflow models developed in Section III

to modify the way communications affect workflow

deployment.

In DCP equations (see Eq. 1), communications are

modeled by the c(u, v) formula. This is to be modified

in order to match our communication model.

c(u, v) = 0, if C(u) = C(v)

c(u, v) =
∑

d∈data
u∈d.src
v/∈d.dst

islocalC(d)=0

ω(d) (2a)

+
∑

d∈data
u∈d.src
v∈d.dst

ω(d) + max
d∈data
u∈d.src
v∈d.dst

ω(d) (2b)

+
∑

d∈data
u/∈d.src
v∈d.dst

islocalC(d,v)=0

ω(d) (2c)

The modification described in Eq. 2 involves the

computation of the worst case latency between tasks

depending on their placement. If tasks u and v are

placed on the same node, the communication cost

between them is null (Eq. 2a). On the other hand, if

u and v are placed on different nodes, we have to

consider the upload time of all data produced by u

and the download time of all data required by v. The

worst case being when the tasks produced by u and

required by v are the last to be uploaded by u and the

first to be downloaded by v (Fig. 4).

In Eq. 2, the first sum (Eq. 2a) corresponds to

the upload by task u of all data not required by v.

The second line (Eq. 2b) corresponds to the interlaced

upload by task u and download by task v of all data

produced by u and consumed by v. Finally, the last

sum (Eq. 2c) corresponds to the download by task v

of all required data produced by tasks other than u.

Those are also visible in Fig. 4.

In the third sum of Eq. 2 (Eq. 2c) it is not necessary

to consider the download of data produced on the

September 19, 2017 DRAFT



Task u

Task v

u∈e.src
v∉e.dst

u∉e.src
v∈e.dst

u∈e.src
v∈e.dst

Fig. 4. Preview of the communications between two tasks for a

data-based workflow on a DaaS-based platform (see Eq. 2).

same node. Similarly, in the first sum (Eq. 2a) we do

not consider the upload of data which are consumed

locally (producer and consumers all on the same node).

The islocal predicate is computed as following.

islocalC(d, u) =


0, if C(d.src) = C(u)

1, otherwise

(3a)

islocalC(d) =
∏

v∈d.dst

islocalC(d, v) (3b)

This evaluation of the communication-induced de-

pendencies between two tasks corresponds to a worst-

case scenario. It is most likely that a specific ordering

of the communications could give us better results but,

as always in static scheduling, we put ourselves in the

worst-case scenario.

B. Modified top- and bottom-level computations

While DCP takes computation resources into ac-

count, we also need to consider node-based networking

resources. If two tasks, with short computation time

but with large amount of data to upload, are placed on

the same node, the second task might be over before

the data produced by the first task have been sent

to the DaaS. The second task would therefore try to

send data using an already busy uplink. Keeping track

of the uplink and downlink availability is paramount

when scheduling multiple tasks on the same node.

The modified formulas for critical path computation,

accounting for each node network availability, are

described in Eq. 4 and graphically shown in Fig. 5.

Similarly to the way DCP deals with node avail-

ability, CPU (equivalent of node availability), uplink

and downlink availability are updated during the linear

scheduling of tasks. Each time a task is placed, the

availability values of the concerned node, which are

used to determine deployment timings, are updated in

anticipation of the next task to be placed on this node.

Initially, all availability values (which can be seen as

time constraints on the task deployment) are initialized

to 0.

cup(u) =
∑

d∈data
u∈d.src

islocalC(d)=0

ω(d) (4a)

cdown(v) =
∑

d∈data
v∈d.dst

islocalC(d,v)=0

ω(d) (4b)

ctotal(u, v) =
∑

d∈data
u∈d.src
v/∈d.dst

islocalC(d)=0

ω(d) +
∑

d∈data
u∈d.src
v∈d.dst

ω(d)

+ max
d∈data
u∈d.src
v∈d.dst

ω(d) +
∑

d∈data
u/∈d.src
v∈d.dst

islocalC(d,v)=0

ω(d) (4c)

TL(v) = max
u∈pred(v)

(TL(u) + ω(u) + ctotal(u, v),

avail
up
TL(C, u) + ctotal(u, v),

avail
down
TL (C, v) + cdown(v),

avail
cpu
TL (C, v)) (4d)

BL(u) = max
v∈succ(u)

(ctotal(u, v) + BL(v),

ctotal(u, v) + avail
down
BL (C, v),

cup(u) + avail
up
BL(C, u),

avail
cpu
BL (C, u)) + ω(u) (4e)

As previously mentioned, we retained the structure

of the DCP algorithm (Algorithm 1), to which we

added our tailor-made formulas to compute the critical

path. This gave us a generic task placement scheme

which can deal with any DAG and which takes poten-

tial network congestion into account.

VI. RESULTS AND DISCUSSIONS

In the previous sections, we described a generic

model for DaaS-based platforms as well as a variant

of DCP that fits this model. In order to validate the

relevance of this clustering algorithm to deploy DAGs

on the Cloud, we are now going to compare it against a

fully distributed scheme (all tasks are deployed on their

own node, with no clustering) as well as against DCP.

September 19, 2017 DRAFT



down

Task u

Task v

u

c own

c

TL+�+ctotal

availTL

availTL

availTL

�+ctotal+BL

�+ctotal+availBL

�+cup+availBL
�+availBL

down+cdown

up+ctotal

cpu

up

cpu

Fig. 5. Preview of the critical path computation taking node

constraints into account in DaaS-based platforms (see Eq. 4).

This validation will also take into consideration our

DAG description model. We will consider two fork-

join cases which have the same description according

to the legacy representation (see Fig. 2) but for which

the new representation can help make more adequate

decisions. True values were obtained on a simulated

Cloud platform using SimGrid which has been shown

to efficiently model concurrency and link sharing in

large-scale networks [12].

A. Comparison of clustering heuristics

Fig. 6 shows both predicted and experimental Gantt

charts obtained using different placement policies on

different platforms. DCP leads to a very high level

of communication parallelism to efficiently use many

nodes and achieve a low makespan. However, us-

ing such a clustering on a simulated Cloud platform

showed that congestion limits the actual data paral-

lelism, leading to a much longer makespan.

We also see that results obtained using our model are

very close to those simulated by SimGrid. This shows

that our model makes clustering decisions based on a

realistic approximation, leading to good results. The

lower level of parallelism given by our algorithm not

only reduces communication-induced latency but also

limits the number of nodes to deploy. Further results

also show that the different data distribution patterns

in single-data and multiple-data fork-join DAGs lead

to relevant clustering decisions.

B. Economical outcomes

While all deployments of a DAG, regardless of

clustering, correspond to the same tasks being executed

and therefore to the same amount of core-hours used,

changing the clustering can affect the deployment cost.

It is important to note that the main objective of static

clustering algorithms such as DCP is to reduce the

global makespan, assuming unlimited resources. In

a Cloud context, this translates to an assignment of

tasks to nodes, with a potentially very large number

of nodes deployed. In a context where nodes are billed

proportionally to the number of core-hours used, we

could hope that, as the same amount of computation

is achieved, the cost would roughly be the same, with

any difference being caused by constraints on the

reservation time (e.g. at least one hour).

However, these assumptions do not take into account

the time during which a node is retrieving data prior

to running a task or sending data after having run a

task. During this time, we have to pay for the node

even though we do not use its computing potential.

Avoiding network congestion and ensuring smooth

data transfers is a way of limiting this waste of CPU

time. Table II shows the number of nodes used, the

makespan, and the total deployment cost for our two

models of fork-join DAGs using different scheduling

algorithms. It is clearly visible that, in addition to

reducing the makespan of the DAG, using the right

clustering algorithm can help reduce deployment costs.

C. Computation to communication ratio

For our experiments, we used synthetic fork-join

workflows where the computation time of each task

was equivalent to the transfer time of one piece of

data from/to the DaaS using the full bandwidth of

the node. This ratio between computation and transfer

September 19, 2017 DRAFT



Ideal platform Our model SimGrid simulation
O

ne
ta

sk
pe

r
no

de

0 1 2 3 4 5

101

101

102

102

103

103

104105

105

106107108

108

109

109

110111

111

112113114115

115

116

116

117

117

118

118

119

119

120

120

121

121

122

122

123

123124

5

125

126

126

127

127

128

128129130

3

131

132

132
Expectat ion for one task per node packing on ideal plat form

Makespan: 5.0

0 5 10 15 20 25 30 35

101102103104105106107108109110111112113114115116
117

117

118
119

119

120
121

121

122
123

123

124
125

125

126
127

127

128
129

129

130

30

131

131

132
133

133

134

3

135

135

136
137

137

138

138

139

139

140
141

141

142

142

143

143

144
145

145

146

146

147

147

148
149

149

150

150

151

151

152

152

153

153

154

154

155

155

156

156

157

157

158

158

159

159

160

160

161

161

162

162

163

163

164

164
Expectat ion for one task per node packing on daas based cloud plat form

Makespan: 37.0

0 5 10 15 20 25 30 35

101

101

102

102

103

103

104

104

105
106

106

107

107

108

108

109110

110

111

111

112

112

113

113

114

114

115

115

116

116

117

117

118

118

119120
121

121

122
123

123

124

124

125126

126

127

127

128129

129

130

130

131
132

132

133

133

134

134

135

135

136137
138

138

139

139

140

140

141

141

142

142

143

143

144

144

145

145

146

146

147148

148

149

149

150

150

151

151

152

152

153

153

154

154

155

155

156

156

157158

58

159

59

160

160

161

161

162

162

163

163

164

164

Simgrid simulat ion of one task per node packing on daas based cloud plat form

Makespan: 37.024

D
C

P

0 1 2 3 4 5

0

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

109

109

110

110

111

111

112

112

113

113

114

114

1 2

3

115

115

4

116

116

5

117

117

6

118

118

7

119

119

8

120

120

9

121

121

10

122

122

11

123

123

12

124

124

13

125

125

14

126

126

15

127

127

16

128

128

17

Expectat ion for classical DCP packing on ideal plat form

Makespan: 5.0

0 5 10 15 20 25 30

101102103104105106107108109110111112113114
115

115

116

116

117

117

118
119

119

120
121

121

122
123

123

124
125

125

126
127

127

128
129

130
131

132
133

133

134
135

13

136
137

137

138
139

139

140141 142
143

143

144

144

145

145

146

146

147

147

148

148

149

149

150

150

151

151

152

152

153

153

154

154

155

155

156

156

Expectat ion for classical DCP packing on daas based cloud plat form

Makespan: 32.0

0 5 10 15 20 25 30

2

10

3

16

1

12

13

17

15

14

4

0

5

6

7

11

8

9

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

109

109

110

110

111

111

112

112

113

113

114

114

115

115

116

116

117

117

118

118

119

119

120

120

121

121

122

122

123

123

124

124

125

125

126

126

127

127

128

128

129

129

130

130

131

131

132

132

133

133

134

134

135

135

136

136

137

137

138

138

139

139

140

140

141

141

142

142

143

143

144

144

145

145

146

146

147

147

148

148

149

149

150

150

151

151

152

152

153

153

154

154

155

155

156

156

Simgrid simulat ion of classical DCP packing on daas based cloud plat form

Makespan: 33.8025

D
aa

S-
aw

ar
e

D
C

P

0 2 4 6 8 10 12 14

0

101

101

102

102

103

103

104

104

1 2 3 4 5 6 7 8 9 10 11 12

105

105

13

106

106

107

107

14

108

108

109

109

15

110

110

111

111

16

112

112

113

113

114

114

115

115

116

116

17

Expectat ion for daas aware packing on daas based cloud plat form

Makespan: 14.0

0 2 4 6 8 10 12 14

2 10 113

16

1 12

13

17

15

14

40 5 6 7 8 9

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

109

109

110

110

111

111

112

112

113

113

114

114

115

115

116

116

Simgrid simulat ion of daas aware packing on daas based cloud plat form

Makespan: 14.0

Fig. 6. Comparison of the different clustering policies (Gantt charts and their associated makespan) for multi-data fork-join DAG (n = 16).

For each sub-figure, the X axis represents time (arbitrary units). Grey rows represent cores. Boxes in those rows are, from top to bottom,

downlink utilization, tasks execution and uplink utilization.

times highlights congestion issues. In this case, single-

node clustering achieves good results, as parallelism

rapidly causes network congestion. With other ratios,

we observe similar behaviors, with the DaaS-aware

DCP being the fastest of all, only beaten on the cost

aspect by the very slow single-node approach.

D. Future work: cluster consolidation

While the absence of dependencies between some

tasks prevents both DCP and the DaaS-aware DCP

from merging them, doing so could have a positive

effect on the cost while maintaining the lowest possible

makespan. This step, called clustering consolidation

[10] is out of the scope of this paper. However, further

work should explore how to adapt existing algorithms

to our model.

VII. CONCLUSION

In this paper, we showed that the network topology

is a key factor in predicting communication patterns

and should therefore be considered by clustering al-

gorithms. By designing a generic network model, we

managed to improve the results of static scheduling

in the context of DaaS-based Cloud platforms. In

fact, the resulting clusters are both more efficient in

terms of makespan (primary objective) and in terms of

deployment cost compared to previous non-network-

aware clustering algorithms.

We expect to use those results as the first component

of an autonomous workflow manager. The next step is

to integrate the computed task packing into a Cloud

batch scheduler. With both components, we plan to

September 19, 2017 DRAFT



TABLE II

COST AND MAKESPAN DETAILS OF DIFFERENT CLUSTERING POLICIES FOR SINGLE-DATA AND MULTI-DATA FORK-JOIN DAG.

DAG Algorithm #Nodes Makespan (t) Cost (core×t)

Single Data Fork-join,

as showcased in Fig. 2b,

with n = 16

One task per node 18 22.024 67.204

Single node 1 18.000 18.000

DCP 14 18.024 56.168

DaaS-aware DCP 2 13.012 20.012

Multiple Data Fork-join,

as showcased in Fig. 2c,

with n = 16

One task per node 18 37.024 82.204

Single node 1 18.000 18.000

DCP 14 33.803 70.156

DaaS-aware DCP 5 14.000 26.048

contribute to or to build a tool that would efficiently

deploy workflows on Cloud platforms and where the

generic platform model could easily be reconfigured

to adapt to changes in the platform paradigm.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out

using the Grid’5000 testbed, supported by a scientific

interest group hosted by Inria and including CNRS,

RENATER and several Universities as well as other

organizations (see https://www.grid5000.fr). Platform

simulations were carried out using SimGrid [12].

REFERENCES

[1] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema,

“Deadline-constrained workflow scheduling algorithms for In-

frastructure as a Service Clouds,” Future Generation Computer

Systems, vol. 29, no. 1, pp. 158–169, 2013.

[2] M.-Y. Wu and D. Gajski, “A programming aid for message-

passing systems,” in Proceedings of the Third SIAM Confer-

ence on Parallel Processing for Scientific Computing. Society

for Industrial and Applied Mathematics, 1989, pp. 328–332.

[3] T. Yang and A. Gerasoulis, “List scheduling with and without

communication delays,” Parallel Comput., vol. 19, pp. 1321–

1344, 1993.

[4] ——, “Dsc: Scheduling parallel tasks on an unbounded num-

ber of processors,” Tech. Rep., 1994.

[5] Y.-K. Kwok and I. Ahmad, “A static scheduling algorithm

using dynamic critical path for assigning parallel algorithms

onto multiprocessors,” in Proceedings of the 1994 Interna-

tional Conference on Parallel Processing - Volume 02, ser.

ICPP ’94. IEEE Computer Society, 1994, pp. 155–159.

[6] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective

and low-complexity task scheduling for heterogeneous com-

puting,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 13, pp. 260–274, 2002.

[7] Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan, and H. Jin, “An

algorithm in swindew-c for scheduling transaction-intensive

cost-constrained cloud workflows,” in Proc. of 4th IEEE In-

ternational Conference on e-Science, 2008, pp. 374–375.

[8] P. Varalakshmi, A. Ramaswamy, A. Balasubramanian, and

P. Vijaykumar, An Optimal Workflow Based Scheduling and

Resource Allocation in Cloud. Springer Berlin Heidelberg,

2011, pp. 411–420.

[9] M. Wieczorek, A. Hoheisel, and R. Prodan, “Towards a general

model of the multi-criteria workflow scheduling on the grid,”

Future Generation Computer Systems, vol. 25, no. 3, pp. 237–

256, 2009.

[10] M. Mao and M. Humphrey, “Scaling and scheduling to max-

imize application performance within budget constraints in

cloud workflows,” in Parallel Distributed Processing (IPDPS),

2013 IEEE 27th International Symposium on, 2013, pp. 67–78.

[11] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-

and deadline-constrained provisioning for scientific workflow

ensembles in iaas clouds,” in Proceedings of the International

Conference on High Performance Computing, Networking,

Storage and Analysis, ser. SC ’12, vol. 22. IEEE Computer

Society Press, 2012, pp. 1—-11.

[12] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and

F. Suter, “Versatile, scalable, and accurate simulation of dis-

tributed applications and platforms,” Journal of Parallel and

Distributed Computing, vol. 74, no. 10, pp. 2899–2917, 2014.

September 19, 2017 DRAFT


