
Parallel and Distributed Algorithms and Programs
Project - Distributing the vibrating string equation

Hadrien Croubois
hadrien.croubois@ens-lyon.fr

Aurélien Cavelan
aurelien.cavelan@ens-lyon.fr

All documents are available on my website : http://hadriencroubois.com/#Teaching

This poject is due for december 7, 2015, 23h59, Lyon’s time (UTC+1). Send your archive to both our emails.

Part 1
Physics background

Vibrating string equation

The vibrating string equation models the propagation of a wave on string or membrane. This differential equation
links the temporal variation of the local position (u) to the current distribution.

µ

T

∂2u

∂t2
= ∆u

With T the tension and µ the linear mass of the medium. This equation can be reformulated as :
1
v2
∂2u

∂t2
= ∆u, (1)

with v =
√

T
µ the speed of sound in the medium. This project’s objective is to simulate this equation on a 2D surface

using a dedicated cellular automaton that behaves similarly.

Step 0 Step 50 Step 150 Step 250 Step 500

Figure 1 – Spreading of the shock-wave induced by an initial perturbation of the medium on a non toric grid (with
walls)

Euler’s approximation of differential equations

Euler’s method provides a way, given a simple differential equation f ′(t) = g(f(t)), to very simply simulate the
behavior of f step by step starting from our initial condition.

f(t+ dt) = f(t) + f ′(t)× dt
= f(t) + g(f(t))× dt

In our case we have a second order differential equation, meaning that we will have to apply this schema twice.

u(t+ dt) = u(t) + u′(t)× dt
u′(t+ dt) = u′(t) + u′′(t)× dt

= u′(t) + v2 ×∆u(t)× dt

1

http://hadriencroubois.com/#Teaching


Project - Distributing the vibrating string equation 2015-2016

Be carefull with the value of dt ! This method is computationnaly unstable and using a large value for dt will produce
very bad results.

Question n°1

a) Give an example of differential equation and dt where applying this algorithm would lead to unacceptable results.
b) For a differential equation of order n, i.e. a differential equation involving the n-th derivative, what values should

be stored to compute the next step ?

Part 2
Cellular automata

Model

A cellular automaton is a quadruplet A = (d,Q, r, δ) where
— d ∈ N is the dimension,
— Q is the set of possible states,
— r ∈ N is the radius,
— δ : QJ−r,rKd → Q is the local transition function.
The cellular automaton is defined on a grid of cells of Zd. Each cell has a state in Q. The transition function δ is used

to compute the next state of a cell, given the current state of cells in the local neighborhood. The global transition
function δ̄ extrapolate the local transition in that it compute the state of the whole grid.
Formally, a configuration for A is an element X ∈ QZd and

δ̄ : QZd

→ QZd

is the transition function that is invariant under translation in each of all the d dimensions and that coincides with
δ at the origin : δ̄(X)0,0,...,0 = δ(X|J−r,rKd). The evolution of the world, as modeled by a cellular automaton, is the
sequence (Xt)t∈N where Xt is the world after t time-steps : Xt+1 = δ̄(Xt). This sequence is depends only on the local
transition function δ and on the initial state of the world X0.

In this assignment, we consider a 2D periodic grid of dimension N ×M , which can be seen as a finite grid G =
J0, N − 1K× J0,M − 1K. We also restrict ourselves to a radius of 1, meaning that for every cell (i, j) ∈ G we consider a
neighborhood that includes :

(i− 1, j − 1) (i, j − 1) (i+ 1, j − 1)
(i− 1, j) (i, j) (i+ 1, j)

(i− 1, j + 1) (i, j + 1) (i+ 1, j + 1)

and we handle the edges by considering G as a torus. Meaning that, given Xt = (xti,j)(i,j)∈G at step t, the next step
Xt+1 = δ̄(Xt) is defined as follows

(δ̄(Xt))i,j , δ

 xti−1,j−1 xti,j−1 xti+1,j−1
xti−1,j xti,j xti+1,j
xti−1,j+1 xti,j+1 xti+1,j+1


Question n°2

a) How many applications of the function δ are necessary to compute Xt on J0, N − 1K× J0,M − 1K ?
b) How would you implement this 2D cellular automaton on a 2D toric grid topology ? Be careful to explain where

the data of each cell is stored, and where the computation of its next step is performed.
c) What are the time and communication costs of your algorithm?
d) Can you adapt it to a non toric grid (finite bounded grid) ? What would the complexity be ?

- 2-



Project - Distributing the vibrating string equation 2015-2016

Laplace operator and convolution

The Laplace operator, which is involved in the vibrating string equation, is a second order derivative operator.

∆f = ∇2f = ∇.∇f

In the nth dimension euclidean place it can very simply be computed as :

∆f =
n∑
i=1

∂2f

∂x2
i

A basic approximation of this operator on a 2D grid of values consist in computing the convolution of this grid with
a 3× 3 kernel.

0 1 0
1 -4 1
0 1 0

Question n°3

a) Given this method for computing the Laplace operator, and the equation 1, describe a cellular automaton to
simulate the evolution of a vibrating environment.

b) (STEP 0) Implement a non distributed version of this algorithm.
c) (STEP 1) Implement a distributed version of this algorithm using MPI on a grid of processors.

Performance evaluation

Question n°4

a) How would you evaluate the performances of your code ? Describe a protocol for evaluating the scalability of
your application.

b) Run this protocol, produce at least one figure and comment your results.

Part 3
New features

Walls

Walls are cells where the value is fixed and cannot change throughout time. This value is usually set to 0 but any
value could technically be used that would represent a local equilibrium.

Question n°5

a) How can you modify you cellular automaton (Q and δ) to add walls to the model ?
b) (STEP 2) Modify your implementation of the cellular automaton to include this feature.

Sensors

Sensors are cells that, in addition to applying the physics equation, maintain a record of past events. Each sensor
has a counter which is increased as each step. If cell (i, j) ∈ G is a sensor, we would like it to record :

recordti,j =
t∑

s=0
(xsi,j)2

Question n°6

a) How can you modify you cellular automaton (Q and δ) to add sensors to the model ?
b) (STEP 3) Modify your implementation of the cellular automaton to include this feature.

- 3-



Project - Distributing the vibrating string equation 2015-2016

Local environment characteristics

So far we considered our environment to be homogeneous, meaning that v is the same throughout the whole grid.
We may want to model the interface between different phase by having this value being defined locally. Each cell would
therefore have it’s own v describing the local characteristics of the environment.

Question n°7

a) How can you modify you cellular automaton (Q and δ) to add local definition of v to the model ?
b) (STEP 4) Modify your implementation of the cellular automaton to include this feature.
c) Can you reconsider past choices ?

Science !

Question n°8

a) How would you consider testing your automaton ? What physical phenomenon would you consider reproducing ?
Fell free to provide input files describing those experiments ?

Part 4
Implementation details

All code are expected to be written in C using MPI. Your programs must compile (with mpicc) and run (with
mpirun) on the machines of the ENS (slsuX-YY).
All real number should be represented as double.

Steps

You executable should progressively implement the different steps (step 0 to step 4). For you executable to pass a
step, it will have to implement the requested features. You should be able to run the program for step 2 through the
command

./myprogram -step 2 ...

Even if your implementation of step 3 would answers to both step 1 and step 2, your program should still handle
./myprogram -step 1 ... as a valid command. You are free to have multiple arguments reuse the same piece of code
if it answers multiple questions.

Environment description

The environment is a grid of sizeN×M . The environment is described in binary files with the following specifications :

Type 1 (Step 0 to 3) :

The content of the environment starts at position 0x25 and consists of N ×M type 1 blocks. Each block is 9 bits
long. Therefore, the total size of a type 1 file is 25 + 9×N ×M bits.

Position Size Type Description

he
ad

er 0x00 0 1 char Type of file (value = 1)
0x01 1 8 size_t Number of rows
0x09 9 8 size_t Number of columns
0x11 17 8 double Velocity (v)

bo
dy 0x19+09*i 25 + 9i 1 char Block type (0x00 = vibrating, 0x01 = wall)

0x1A+09*i 26 + 9i 8 double Value

Table 1 – Type 1 file structure

- 4-



Project - Distributing the vibrating string equation 2015-2016

Type 2 (Step 4) :

The content of the environment starts at position 0x17 and consists of N ×M type 2 blocks. Each block is 17 bits
long. Therefore, the total size of a type 2 file is 17 + 17×N ×M bits.

Position Size Type Description

he
ad

er 0x00 0 1 char Type of file (value = 2)
0x01 1 8 size_t Number of rows
0x09 9 8 size_t Number of columns

bo
dy

0x11+0x11*i 17 + 17i 1 char Block type (0x00 = vibrating, 0x01 = wall, 0x02 = sensor)
0x12+0x11*i 18 + 17i 8 double Value
0x1A+0x11*i 26 + 17i 8 double Local velocity

Table 2 – Type 2 file structure

Input parameters

Input parameters are as follows :

Required arguments

1. -step <nb>

2. -i <input file>. Path to the input file describing the environment.
3. -iteration <number>. Number of iteration to compute.
4. -dt <number>. Value for dt (size of a time-step).
5. -grid <x> <y>. Dimensions of the processor grid. You program is only expected to run on x ∗ y processors. If

another number of processors is given, you should print and error message.

Optional arguments

1. -lastdump <output path>. If this parameter is enabled, the matrix of values at the last step must be written
to the specified file.

2. -alldump <output path>. If this parameter is enabled, all matrices (for each iteration), must be written to the
specified file. Each file name (one for each iteration) must include the iteration step using sprintf. Path must
not be longer than 256 characters.

3. -sensor <output path>. If this parameter is enabled, sensor values must be exported to the specified file.
If no optional argument if given, no output is expected

Exemple of valid input line

./myprogram -step 3 -i basicconfig.env -iterations 1000 -dt 1.0 -grid 4 8 -alldump
output_%03d.dump -sensor output_sensor.log

Those parameter should run the simulation asked at step 2 (including walls and sensors) on the grid described in
the file basicconfig.env, for 1000 iterations that are all 1.0 long, on a grid of 4 × 8 processors. At each step the
grid should be exported to output_000.dump, output_001.dump ... etc. At the end of the simulation, the sensor data
should be exported to output_sensor.log

Output format

Files produced by -lastdump and -alldump must be binary files containing the matrix of values in row-major
format. For more information about writting binary files in C, go read man fwrite. The expected size of the file is

8 ∗ nbcols ∗ nbrows (bytes)

Files produced by -sensor must be ascii files with one line per sensor. Each line must contain the x and y coordinates
of the sensor as well as the measured value.

- 5-



Project - Distributing the vibrating string equation 2015-2016

...
0 125 46.24691
0 126 44.26151
0 127 43.27426

...

Part 5
Handover details

Don’t worry if some features are missing, instead, explain in your report what you have achieved and where you got
stuck.
All theoretical answers must be written in your .pdf report. I’d recommend this report to be written using LATEX,

but you are free to use applications like Microsoft Word or Open Office (as long as you export it as a PDF). This
report, and all your code must be provided put in a .tar.gz archive named name.tar.gz in which you must have a
folder name (replace name by your name !). You must also provide a makefile, such that running make at the root of
the folder name will compile everything and create all executables at the root of name.
Your code is your property, protect it with a license ! Also, when sending us your archive don’t forget to provide us

with a md5 checksum so we can verify its integrity.

- 6-


	Physics background
	Cellular automata
	New features
	Implementation details
	Handover details

