Parallel and Distributed Algorithms and Programs
TD n°1 - P-RAM

Hadrien Croubois Aurélien Cavelan
hadrien.croubois@ens-lyon.fr aurelien.cavelan@ens-lyon.fr

16/10/2015

All documents are available on my website: http://hadriencroubois.com/#Teaching

Part 1
(Selection in a list

Question 1

a) Let L be a list containing n objects colored either in blue or red. Design an effective EREW algorithm that
separates the blue elements from the red elements (i.e. that builds a new list containing only the blue elements).

Part 2
(Mystery Procedure

We define the following two operators for a table A = [ag, a1, ..., a,—1] of n integers:
o PRESCAN(A) returns the table: [0,ap,a0 + a1,a0 + a1 +ag,...,a0 + a1 + ...+ an_2]
o SCAN(A) returns the table: [ag,ao + a1,a0 + a1 +ag,...,a0+ a1+ ...+ ap_1]

These two operators can be computed in O(logn) time on P-RAM EREW.
Given a table Flags we define the following SPLIT procedure:

Algorithm 1: Mystery Procedure 1

def Split (A, Flags):
Tup < n — REVERSE(SCAN(REVERSE(Flags)));
Idown < PRESCAN(1 — Flags);
for i =1 to n do in parallel
if Flags(i) then
| Index[i] + Tupli]
else
| Index[i] + Idownl]i]

Result <~ PERMUTE(A, Index);
L return Result

The names of the different functions are relatively intuitive. In particular, REVERSE reverse the table, and
PERMUTE(A, Index) reorders table A according the permutation Index. The horrible expression REVERSE(SCAN(REVERSE(Flags
does a simple SCAN but from the end of table Flags (of which the elements are considered as integers).

Question 2
a) Apply the procedure on this input:
A =[5 7314
1 1 1 1 0

72]
Flags = | 10

2
0]
b) What is the purpose of the SPLIT procedure?

¢) What is the computational time of the SPLIT procedure?

http://hadriencroubois.com/#Teaching

TD n°1 - P-RAM 2015-2016

Question 3

a) We consider the following Mystery procedure:

Algorithm 2: Mystery Procedure 2

def Mystery (A, Number_Of__Bits):
for i =0 to Number_Of_bits — 1 do
bit(i) + table containing the i*" bit of the elements of A;
L A « SPLIT(A, bit(4));

(a) Run the procedure on A = [5,7,3,1,4,2,7,2] with Number__Of _Bits = 3.
(b) What is the purpose of procedure MYSTERY 27

(c) Given entries of size O(logn) bits, what is the complexity with n processors? With p processeurs?

Part 3
(Connected components

We would like to design a CREW algorithm to compute the connected components of a graph G = (V, E) with vertices
numbered from to 1 to n. In particular, we are looking for an algorithm that returns a table C' of size n, such that
C(i) = C(j) = k if and only if ¢ and j are in the connected component and k is the smallest index among the vertices
from this component.

Definition 1 For all iteration of the algorithm, we call the pseudo-vertex labeled by i the set of vertices j, k,l,--- €V
such that C(j) = C(k) = C(l) = --- =i. In other words, we consider the pseudo-vertez labeled by i to be the same as
the vertex labeled by 1.

One of the invariants of the algorithm is that the smallest index of the vertices from the pseudo-vertex labeled by 4
is ¢ and the vertices belonging to a pseudo-vertex are in the same connected component. This assertion is true if we
initialize C' by: for all i € V = [1,n] : C(i¢) = ¢. This means that at the begining, each processor considers itself as
the pseudo-vertex of its connected component. The goal of the algorithm is to change this egocentric point of view.

Definition 2 A k-cyclic tree (k > 0) is a weakly connected oriented graph such that:
e Fach vertex has an out-degree of 1
o There is exactly one circuit of length k + 1.

We call a star a 0-cyclic tree.

Therefore, the previous invariant is that the oriented graph (V,{(i,C(i)) | i € V'}) consists of stars only. We can
identify pseudo-vertex and stars, the center of the star being the index of the pseudo-vertex. Computing the connected
components is done by running the following procedures several times:

Question 4

a) We consider the following graph:

Apply the function GATHER on this graph, then the function JuMP, and the GATHER function again, etc.

_ 9

TD n°1 - P-RAM

2015-2016

Algorithm 3: Procedures to compute the connected components.

def Gather ():
for ¢ € S do in parallel

| T(i) « min{C(5) | {i,j} € E,C(j) # C(0)} ;
for i € S do in parallel
LT < win{T() | CO) =i TG) # 1}

def Jump():
for ¢ € S do in parallel
L B(i) < T(i)
for j =1 tologn do
for ¢ € S do in parallel
L [T() « T(T()

for i € S do in parallel
L C(i) < min {B(T'(z)), T(i)}

// st Uensemble est vide, on associe C(i)

// si Uensemble est vide, on associe C(i)

b) Show that after using the GATHER function, connected components containing several pseudo-vertices induce
1-cyclic trees in the oriented graph (V,{(i,T(:)) | i € V}). Note that the smallest pseudo-vertex of a 1-cyclic

tree belongs to the cycle.

¢) Show that the function JUMP transforms a 1 cyclic tree into a 1-cyclic star (or pseudo-vertex).

d) Show that after [logn]| iterations, the connected components of the graph are represented by pseudo-vertices

induced by C.

e) What is the complexity of the algorithm? How many algorithms are used?

	Selection in a list
	Mystery Procedure
	Connected components

