
Parallel and Distributed Algorithms and Programs
TD n°4 - Scheduling (2)

Hadrien Croubois
hadrien.croubois@ens-lyon.fr

Aurélien Cavelan
aurelien.cavelan@ens-lyon.fr

2/12/2015

All documents are available on my website: http://hadriencroubois.com/#Teaching

Part 1
Anomalies with list scheduling

Consider the following graph, where each task is represented by a letter and has a number to indicate its weight.

Question 1

a) What is the makespan obtained with a list scheduling based on the critical path, with 2 processors? Is it optimal?

b) Suppose that the weight of each task is now decreased by one unit (A now has a weight of 7, B has a weight of
1, ...). Show that the makespan obtained with a list scheduling based on the critical path is increasing. Show
that the makespan obtained with any list heuristic is increasing.

c) Back to the initial weights. Suppose that we now have 3 processors. Show that the makespan obtained with a
list scheduling based on the critical path is increasing. Show that the makespan obtained with any list heuristic
is increasing.

Part 2
Scheduling on a set of heterogenous processors (without communications)

Consider a set n independant tasks T1, ..., Tn to be scheduled on p processors. We denote by pij the time to compute
the task Tj on the processor Pi. In the case where all processors are simply going at different speeds (i.e. when
pij = pj/si, where si represents the speed of the processor i and pj the amount of work needed for task Tj), the
problem is more simple and we have the same result as in the homogeneous case. If not, the current best approximation
is a 2-approximation.

Question 2

a) Show that deciding of the existence of a schedule whose execution time is 3 for a set of independant tasks
T1, ..., Tn on processors P1, ..., Pp is an NP-complete problem. (You may consider a reduction to 3DM.)

1

http://hadriencroubois.com/#Teaching


TD n°4 - Scheduling (2) 2015-2016

Definition 1 (3-Dimensional-Matching (3DM)). Given A = a1, ..., an, B = b1, ..., bn, C = c1, ..., cn be three finite,
disjoint sets, and F = T1, ..., Tn a subset of triples (a, b, c) such that a ∈ A, b ∈ B, and c ∈ C, find a subset F ′ of F
such as for any two distinct triples (a1, b1, c1) ∈ M and (a2, b2, c2) ∈ F ′, we have a1 6= a2, b1 6= b2, and c1 6= c2 (i.e.
any element of A ∪B ∪ C appears in exactly one triple of F ′).

Part 3
Coffman and Graham scheduling

Consider 2 identical machines, n tasks (Ti), i = 1 . . . n with same length and ≺ a strict partial order on the tasks. We
denote by σ = (µ, τ) a schedule where µ(i) is the machine executing Ti and τ(i) is the start date of the execution of
Ti.
When Ti ≺ Tj , we say that Tj is a successor of Ti. In addition, when there is no task Tk such that Ti ≺ Tk ≺ Tj ,

we say Tj a direct successor of Ti. We define in the same way the notion of direct predecessor.

Question 3

a) Give an optimal schedule for the following graph.

Given a priority function p (assumed injective) on the tasks, we consider a list schedule σp = (µp, τp) defined as
follows: we choose among all free tasks the highest priority one and we execute it on machine 1. Similarly, the second
highest priority task is executed on machine 2.

Question 4

a) Which condition p must verify if we want the tasks to be executed in a compatible order with the precedance
constraints?

b) Show that the machine 1 is always active, and that if Ti is executed on machine 1, all the tasks Tj executed after
(or at the same time) are of lower priority than Ti.

To simplify, we assume that in σp, when there is no free task to be executed on machine 2, we execute a "ghost"
task without predecessor, and of lower priority than the initial tasks. We define a sequence of pair of tasks (Dk, Jk),
executed at the same time, respectively on machine 1 and 2. D0 is the last task to be executed on machine 1, and
similarly J0 is the last task to be executed on machine 2. Jk (if it exists) is the latest task task to be executed before
Dk−1 on machine 2, which is of lower priority than Dk−1. We note Fk the set of tasks that are executed strictly after
Dk+1 and strictly before Dk, plus the task Dk, and we note Ek the tasks of Fk without predecesoors in Fk.

Question 5

a) Give for the last example, the schedule σp the tasks Dk and Jk and the set Fk and Ek, assuming that the priority
p follows alphabetical order (increasing) on the name of the tasks.

b) Same question with a priority compatible with the precedance constraints (to specify) leading to an optimal
result.

c) Show that any task of Fk is of higher priority than Dk and that any task Ti of Fk−1 is successor of Dk. Deduce
that the tasks of Ek−1are the direct successors of Dk and that any other direct successor of Dk has a lower
priority.

We consider ≺l the lexicographical order and we assume that the priority p verifies (in addition) the following
property: p(Tj) < p(Ti) if and only if l(Tj) ≺l l(Tj) (resp. l(Ti)) is the priority list of the direct successor of Tj (resp.
Ti) ordered by decreasing order.

- 2-



TD n°4 - Scheduling (2) 2015-2016

Question 6

a) Show that all the tasks of Fk (in articular those without a successor in Fk) are predecessor of all the tasks of
Fk−1. Conlcude by giving an algorithm that can build such a priority list and an optimal schedule.

- 3-


