
TD8: Voronoi Map/Distance Transformation via

Jump Flooding

In this TP, the idea is to implement a Voronoi map algorithm called jump flooding algorithm
(JFA). This algorithm is not exact in the sense that it may contains errors and is not optimal in
terms of computational cost. However, it has several properties which makes it useful in some
applications.

Exercise 1 Jump Flooding Algorithm

Warm up Create a DGtal program which constructs an image with −1 values everywhere and
a positive values at some random sites (one value per site, this value will be used to characterize
each site). The generating function is thus parameterized by n, the image width, and N the
number of sites. Here is an example of image management in DGtal

#include <DGtal/helpers/StdDefs.h>

#include "DGtal/images/ImageContainerBySTLVector.h"

...

//Image type (with unsigned int values)

typedef ImageContainerBySTLVector< Domain, int > Image;

//Create an image [0,n]x[0,n]

Image myImage(Domain (Point(0,0), Point(n,n)));

//Get and Set value

myImage.setValue(Point(2,3), 42);

int val = myImage(Point(2,3)); //val == 42

//Decide if a point is in the image domain

bool res = myImage.domain().isInside(Point(17,17)); //res==true if n>=17

//Iterate on image values

for(Image::Domain::ConstIterator it = myImage.domain().begin(),

itend = myImage.domain().end(); it!=itend ; ++it) {

int val2 = myImage(*it);

std::cout << val2 <<" ";

}

The JFA of step k (denoted JFA(k)) is defined as follow. For each point p = (x, y) in the
image:

• Collect the four sites stored in the image at pixels S with l∞ distance k. More precisely,
S = {(x± k, y ± k)}.

• Compute the distance (using l2 metric) between p and all sites (eight sites in S and the
site stored at p)

• Store the site with closest distance at p in the image.

1

Figure 1: JFA illustration.

When probing the site at coordinate (x, y), if you get a −1 value or if you jump outside the
image, consider that the distance is +∞.

Questions:

• Implement the JFA(k) method. You can use a Board export to display the Voronoi
diagram under construction (cf Fig. 1) and the following code snippet (assuming that
voro is the name of your image).

board.clear();

board << voro.domain();

for(typename Image::Domain::ConstIterator it =voro.domain().begin(),

itend = voro.domain().end(); it != itend; ++it) {

if (voro(*it) != -1) {

//random color from site index voro(*it)

unsigned char color = (unsigned char) (voro(*it)*13727 % 256);

board << CustomStyle((*it).className(), new CustomColors(Color(c,c,c),Color(c,c,c)))

<< (*it);;

}

}

board.save....

• What is the computational cost of one JFA step ?

• The overall JFA algorithm consist in JFA(k) steps with k = {n2 ,
n
4 , . . . , 1} (see Fig. 1).

Sometimes, we consider a JFA+1 in which the last step (k = 1) is performed twice. What
is the overall complexity of such algorithm ?

• Implement the JFA algorithm.

• Implement the exact ”brute force” Voronoi map algorithm (for each point, scan all sites
and store the closest). Compare the result and return the average distance error.

• From the JFA Voronoi map, output the distance transformation.

Discussion JFA (or JFA+1) is not optimal for the Voronoi map/Distance transformation
problem. However, each jump can be implemented in a fine grain parallelism framework: during
step k, each pixels can be processed in parallel (4 pixels are read and there is a final write).
Hence, JFA is perfect for implementations on GPU where each parallel core runs on texture map
pixels (roughly). Note that optimal algorithm discussed in the lecture requires 1D propagation
which could be tricky to implement on such GPU model.

2

Exercise 2 Lloyd’s Relaxation

In this exercise, we implement Lloyd’s relaxation (also called k−means algorithm). In many
computer graphics applications, Lloyd’s relaxation is widely used in order to “uniformize” point
distributions.

The brute-force process is quite simple:

1. Throw N random points in the domain

2. Compute the Voronoi map (here using JFA)

3. For each cell:

• Compute its barycenter

• Move the corresponding site to the barycenter

4. Goto step 2 until “stability”

Beside this naive description, Lloyd’s relaxation is related to an explicit energy function
with many links to several fields (geometry processing, data-mining, . . .). The convergence
in the continuous plane can be obtained and the limit point distribution has many interesting
properties.

Question Implement the Lloyd’s relaxation and at each step, output the site map.

You should observe that starting from uniform point distribution, the point set tends to a low
discrepancy point distribution (points cover uniformly the space) and later toward hexagonal
structures. At this point, the stability criterion could just be a number of steps in the iterative
process.

An example of the Lloyd’s approach can be seen here: http://www.youtube.com/watch?v=
S0sAnabdCLg

3

http://www.youtube.com/watch?v=S0sAnabdCLg
http://www.youtube.com/watch?v=S0sAnabdCLg

